हिंदी

यदि f(x) = 2cosx-1cotx-1,x≠π4 है, तो ff(π4) का ऐसा मान ज्ञात कीजिए कि x = π4 पर f (x) संतत बन जाए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

 यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।

योग

उत्तर

दिया है f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4`

अतः, `lim_(x -> pi/4) "f"(x) = lim_(x -> pi/4) (sqrt(2) cos x - 1)/(cot x - 1)`

= `lim_(x -> pi/4) ((sqrt(2) cos x - 1) sin x)/(cos x - sin x)`

= `lim_(x -> pi/4) ((sqrt(2) cos x - 1))/((sqrt(2) cos x + 1)) * ((sqrt(2) cos x + 10))/((cosx - sin x)) * ((cosx + sin x))/((cos x + sin x)) * sin x`

= `lim_(x -> pi/4) (2cos^2 x - 1)/(cos^2 x - sin^2x) * (cosx + sinx)/(sqrt(2) cos x + 1) * (sin x)`

= `lim_(x -> pi/4) (cos 2x)/(cos 2x) * ((cosx + sinx)/(sqrt(2) cos x + 1)) * (sin x)`

= `lim_(x -> pi/4) ((cosx + sin x))/(sqrt(2) cos x + 1) sinx`

= `(1/sqrt(2) (1/sqrt(2) + 1/sqrt(2)))/(sqrt(2) * 1/sqrt(2) + 1)`

= `1/2`

इस प्रकार,, `lim_(x -> pi/2) "f"(x) = 1/2`

यदि हम `"f"(pi/4) = 1/2`, परिभाषित करें, तो  x = `pi/4` पर f(x) संतत बन जाएगा।

अतः,  f के x = `pi/4` पर संतत होने लिए `"f"(pi/4) = 1/2` है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - हल उदाहरण [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
हल उदाहरण | Q 19 | पृष्ठ ९५

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(3x2 – 9x + 5)9


यदि ex + ey = ex+y  दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।


यदि फलन f(x) = `{{:(sinx/x + cosx",",  "यदि" x ≠ 0),("k"",",  "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx  द्वारा दिया जाने वाला फलन अवकलनीय है,


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है 


उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।


 cos x के सापेक्ष sin x का अवकलज ______ है।


 x = 2 पर f(x) = `{{:(3x + 5",", "यदि"  x ≥ 2),(x^2",", "यदि"  x < 2):}` 


 x = a पर  f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "यदि"  x ≠ 0),(0",",  "यदि"  x = "a"):}` 


फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ  t = `1/(x - 1)` है।


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


 यदि x = asin2t (1 + cos2t)  और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`


यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।


(x2 + y2)2 = xy


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।


[–1, 1] में f(x) = log(x2 + 2) – log3 


[0, 1] में f(x) = x3 – 2x2 – x + 3 


[0, π] में f(x) = sinx – sin2x 


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


यदि f(x) = `x^2 sin  1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×