Advertisements
Advertisements
प्रश्न
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
उत्तर
दिया है f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4`
अतः, `lim_(x -> pi/4) "f"(x) = lim_(x -> pi/4) (sqrt(2) cos x - 1)/(cot x - 1)`
= `lim_(x -> pi/4) ((sqrt(2) cos x - 1) sin x)/(cos x - sin x)`
= `lim_(x -> pi/4) ((sqrt(2) cos x - 1))/((sqrt(2) cos x + 1)) * ((sqrt(2) cos x + 10))/((cosx - sin x)) * ((cosx + sin x))/((cos x + sin x)) * sin x`
= `lim_(x -> pi/4) (2cos^2 x - 1)/(cos^2 x - sin^2x) * (cosx + sinx)/(sqrt(2) cos x + 1) * (sin x)`
= `lim_(x -> pi/4) (cos 2x)/(cos 2x) * ((cosx + sinx)/(sqrt(2) cos x + 1)) * (sin x)`
= `lim_(x -> pi/4) ((cosx + sin x))/(sqrt(2) cos x + 1) sinx`
= `(1/sqrt(2) (1/sqrt(2) + 1/sqrt(2)))/(sqrt(2) * 1/sqrt(2) + 1)`
= `1/2`
इस प्रकार,, `lim_(x -> pi/2) "f"(x) = 1/2`
यदि हम `"f"(pi/4) = 1/2`, परिभाषित करें, तो x = `pi/4` पर f(x) संतत बन जाएगा।
अतः, f के x = `pi/4` पर संतत होने लिए `"f"(pi/4) = 1/2` है।
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(log x)log x, x > 1
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
यदि ex + ey = ex+y दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।
यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
`sin^-1 1/sqrt(x + 1)`
sinmx . cosnx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
sec(x + y) = xy
(x2 + y2)2 = xy
यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
[1, 4] में f(x) = `1/(4x - 1)`
वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।
यदि f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?
मान लीजिए f(x) = |sin x| है, तब
यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।
एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।