मराठी

दर्शाइए कि (x) = f(x) = ee,यदि,यदि{e1x-1e1x+1,यदि x≠00, यदि x=0 द्वारा दिया जाने वाला फलन f बिंदु x = 0 पर असंतत है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि"  x ≠ 0),(0",",  "यदि"  x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु  x = 0 पर असंतत है।

बेरीज

उत्तर

x = 0 पर :

`lim_(x -> 0^-) "f"(x) = lim_(x -> 0^-) ("e"^(1/x) - 1)/("e"^(1/x) + 1)`

= `(0 - 1)/(0 + 1)`

= −1

इसी प्रकार, `lim_(x -> 0^+) "f"(x) = lim_(x -> 0^+) ("e"^(1/x) - 1)/("e"^(1/x) + 1)`

= `lim_(x -> 0^+) (1 - 1/"e"^(1/x))/(1 + 1/"e"^(1/x))`

= `lim_(x -> 0^+) (1 - "e"^((-1)/x))/(1 + "e^((-1)/x)`

= `(1 - 0)/(1 + 0)`

= 1

इस प्रकार `lim_(x -> 0^-) "f"(x) ≠  lim "f"(x)_(x -> 0^+)` है।

अतः, `lim_(x -> 0) "f"(x)` का अस्तित्व नहीं है। इसीलिए x = 0 पर f असंतत है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - हल उदाहरण [पृष्ठ ९७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
हल उदाहरण | Q 20 | पृष्ठ ९७

संबंधित प्रश्‍न

यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


यदि ex + ey = ex+y  दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`


यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


मान लीजिए कि f(x)= |cosx| है।जब,


उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx  द्वारा दिया जाने वाला फलन अवकलनीय है,


यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।


x = 5 पर f(x) = `{{:(3x - 8",",  "यदि"  x ≤ 5),(2"k"",",  "यदि"  x > 5):}` 


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


`cos(tan sqrt(x + 1))`


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


(x2 + y2)2 = xy


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`


[0, 1] में f(x) = x(x – 1)2


फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।


मान लीजिए f(x) = |sin x| है, तब


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


दो संतत फलनों का संयोजन एक संतत फलन होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×