मराठी

Cos-1(2x1-x2) के सापेक्ष tan-1(1-x2x) को अवकलित कीजिए, जहाँ x∈(12,1) है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।

बेरीज

उत्तर

मान लीजिए कि u = `tan^-1 (sqrt(1 - x^2)/x)` और v = `cos^-1(2xsqrt(1 - x^2))` है।

हम `"du"/"dv" = (("du")/("dx"))/(("dv")/("dx"))` ज्ञात करना चाहते हैं।

अब u = `tan^-1 (sqrt(1 - x^2)/x)`  में

 x = `sintheta  "रखिए", "जहाँ" (pi/2 < theta < pi/2)`  है।

तब u = `tan^-1 (sqrt(1 - sin^2theta)/sintheta)`

= `tan^-1 (cot theta)`

= `tan^-1 {tan (pi/2 - theta)}`

= `pi/2 - theta`

= `pi/2 - sin^-1x`

अत: `"du"/"dx" = (-1)/sqrt(1 - x^2)` होगा।

अब v = `cos^-1 (2x sqrt(1 - x^2))`

= `pi/2 - sin^-1 (2x sqrt(1 - x^2))`

= `pi/2 - sin^-1 (2sintheta sqrt(1 - sin^2theta))`

= `pi/2 - sin^-1 (sin 2theta)`

= `pi/2 - sin^-1 {sin (pi - 2theta)}`  .......{क्योंकि  `pi/2` < 2θ < π]

= `pi/2 - (pi / 2theta)`

= `(-pi)/2 + 2theta`

अत: v = `(-pi)/2 + 2sin^-1x`

⇒ `"dv"/"dv" = (("du")/("d"x))/(("dv")/("dx"))`

= `((-1)/sqrt(1 - x^2))/(2/sqrt(1 - x^2))`

= `(-1)/2`

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - हल उदाहरण [पृष्ठ ९८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
हल उदाहरण | Q 23 | पृष्ठ ९८

संबंधित प्रश्‍न

क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(5x)^(3 cos 2x)`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(log x)log x, x > 1


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।


यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",",  "यदि"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि"  x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?


फलन f(x) = |x| + |x – 1|


उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx  द्वारा दिया जाने वाला फलन अवकलनीय है,


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।


x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि"  x ≠ 0),(5",", "यदि"  x = 0):}` 


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


दर्शाइए कि फलन  f(x) = |sin x + cos x| बिंदु x = π पर संतत है।


x = 2 पर, f(x) = `{{:(x[x]",",  "यदि"  0 ≤ x < 2),((x - 1)x",",  "यदि"  2 ≤ x < 3):}`  


(sin x)cosx


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


[– 2, 2] में f(x) = `sqrt(4 - x^2)` 


[1, 5] में f(x) = `sqrt(25 - x^2)` 


यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।


यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×