Advertisements
Advertisements
प्रश्न
`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।
उत्तर
मान लीजिए कि u = `tan^-1 (sqrt(1 - x^2)/x)` और v = `cos^-1(2xsqrt(1 - x^2))` है।
हम `"du"/"dv" = (("du")/("dx"))/(("dv")/("dx"))` ज्ञात करना चाहते हैं।
अब u = `tan^-1 (sqrt(1 - x^2)/x)` में
x = `sintheta "रखिए", "जहाँ" (pi/2 < theta < pi/2)` है।
तब u = `tan^-1 (sqrt(1 - sin^2theta)/sintheta)`
= `tan^-1 (cot theta)`
= `tan^-1 {tan (pi/2 - theta)}`
= `pi/2 - theta`
= `pi/2 - sin^-1x`
अत: `"du"/"dx" = (-1)/sqrt(1 - x^2)` होगा।
अब v = `cos^-1 (2x sqrt(1 - x^2))`
= `pi/2 - sin^-1 (2x sqrt(1 - x^2))`
= `pi/2 - sin^-1 (2sintheta sqrt(1 - sin^2theta))`
= `pi/2 - sin^-1 (sin 2theta)`
= `pi/2 - sin^-1 {sin (pi - 2theta)}` .......{क्योंकि `pi/2` < 2θ < π]
= `pi/2 - (pi / 2theta)`
= `(-pi)/2 + 2theta`
अत: v = `(-pi)/2 + 2sin^-1x`
⇒ `"dv"/"dv" = (("du")/("d"x))/(("dv")/("dx"))`
= `((-1)/sqrt(1 - x^2))/(2/sqrt(1 - x^2))`
= `(-1)/2`
APPEARS IN
संबंधित प्रश्न
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(log x)log x, x > 1
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",", "यदि" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि" x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?
फलन f(x) = |x| + |x – 1|
उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx द्वारा दिया जाने वाला फलन अवकलनीय है,
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
(sin x)cosx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
[1, 5] में f(x) = `sqrt(25 - x^2)`
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।