मराठी

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए- (5x)3cos2x - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(5x)^(3 cos 2x)`

बेरीज

उत्तर १

माना y = `(5x)^(3 cos 2x)`

दोनों ओर लघुगणक लेने पर,

log y = 3 cos 2x log 5x

x के सापेक्ष अवकलन करने पर,

`1/y dy/dx = 3[cos 2x d/dx log 5x + log 5x d/dx cos 2x]`

`= 3[cos 2x * 1/(5x) d/dx (5x) + log 5x * (- sin 2x) d/dx (2x)]`

`= 3[cos 2x * 1/(5x) * 5 - 2 sin 2x log 5x]`

`= 3 [(cos 2x)/x - 2 sin 2x log 5x]`

`dy/dx = 3y [(cos 2x)/x - 2 sin 2x log 5x]`

`= 3 (5x)^(3 cos 2x) [(cos 2x)/x - 2 sin 2x log x]`

shaalaa.com

उत्तर २

माना, y = `(5x)^(3cos 2x)`

दोनों ओर लघुगणक लेने पर,

log y = 3 cos 2x log (5x) = 3 cos 2x [log 5 + log x]

log y = 3 cos 2x log 5 + 3 cos 2x log x           ....(1)

(1) का x के सापेक्ष अवकलन करने पर, हम पाते हैं,

`1/y dy/dx = 3 log 5 (-sin 2x)* 2 + (3 cos 2x)/x + 3 log x (-2 sin 2x)`

`= - 6 log 5 sin 2x + (3 cos 2x)/x - 6 log x sin 2x`

`dy/dx = (5x)^(3cos 2x) [(3 cos 2x)/x - 6 (log 5 + log x) sin 2x]`

`= (5x)^(3 cos 2x) [(3 cos 2x)/x - 6 log 5x sin 2x]`

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य तथा अवकलनीयता - अध्याय 5 पर विविध प्रश्नावली [पृष्ठ २०७]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 5 सांतत्य तथा अवकलनीयता
अध्याय 5 पर विविध प्रश्नावली | Q 3. | पृष्ठ २०७

संबंधित प्रश्‍न

यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


यदि ex + ey = ex+y  दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।


[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।


मान लीजिए कि f(x)= |cosx| है।जब,


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है 


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

 cos x के सापेक्ष sin x का अवकलज ______ है।


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


x = 0 पर f(x) = `{{:(|x|cos  1/x",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "यदि"  0 ≤ x ≤ 1):}` 


सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`  से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।


x = 2 पर, f(x) = `{{:(1 + x",",  "यदि"  x ≤ 2),(5 - x",",  "यदि"  x > 2):}` 


sinx2 + sin2x + sin2(x2)


(sin x)cosx


`sin xy + x/y` = x2 – y


(x2 + y2)2 = xy


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।


फलन f(x) = `(4 - x^2)/(4x - x^3)`


यदि f(x) = `x^2 sin  1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।


यदि f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×