मराठी

यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि [1+(dydx)2]32d2ydx2, a और b से स्वतंत्र एक स्थिर राशि है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।

बेरीज

उत्तर

यहाँ (x – a)2 + (y – b)2 = (दिया है)                  …(1)

x के सापेक्ष अवकलन करने पर,

`=> 2 (x - a) + 2(y - b)^2 dy/dx = 0`

`=> (x - a) + (y - b) dy/dx = 0`                 ...(2) 

पुनः x के सापेक्ष अवकलन करने पर,

`1 + dy/dx * dy/dx + (y - b) (d^2 y)/dx^2` = 0

`1 + (dy/dx)^2 + (y - b) (d^2y)/dx^2` = 0

`=> (y - b) = - {(1 + (dy/dx)^2)/((d^2y)/dx^2)}`           ...(3)

(2) में (y - b) का मान रखने पर,

`(x - a) = (1 + (dy/dx)^2)/((d^2 y)/dx^2) * dy/dx`

या `(x - a) = {(1 + (dy/dx)^2)/((d^2y)/dx^2)}(dy/dx)`        ...(4)

(1) में (3) व (4) से (x - a) तथा (y - b) का मान रखने से,

`{1 + (dy/dx)^2}^2/((d^2y)/dx^2)^2 * (dy/dx)^2 + {(1 + (dy/dx)^2)/((d^2y)/dx^2)} = c^2`

`((d^2y)/dx^2)^2` से गुणा करने पर,

`[1 + (dy/dx)^2]^2 (dy/dx)^2 + [1 + (dy/dx)^2]^2`

`= c^2 ((d^2y)/dx)^2`

`=> [1 + (dy/dx)^2]^2 [(dy/dx)^2 + 1] = c^2 ((d^2y)/dx^2)^2`

`=> {1 + (dy/dx)^2}^3 = c^2 ((d^2y)/dx^2)^2`

वर्गमूल लेने पर,

`therefore {1 + (dy/dx)^2}^(3//2)/((d^2y)/dx^2)` = c    ...(a और b से स्वतंत्र एक स्थिर राशि है।)

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य तथा अवकलनीयता - अध्याय 5 पर विविध प्रश्नावली [पृष्ठ २०८]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 5 सांतत्य तथा अवकलनीयता
अध्याय 5 पर विविध प्रश्नावली | Q 15. | पृष्ठ २०८

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।


यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`


यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।


[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


 x = 2 पर f(x) = `{{:(3x + 5",", "यदि"  x ≥ 2),(x^2",", "यदि"  x < 2):}` 


x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि"  x ≠ 0),(5",", "यदि"  x = 0):}` 


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


x = 1 पर f(x) = |x| + |x − 1|


`2^(cos^(2_x)`


`log (x + sqrt(x^2 + "a"))`


sinn (ax2 + bx + c)


(sin x)cosx


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


`sin xy + x/y` = x2 – y


tan–1(x2 + y2) = a


[0, 1] में f(x) = x(x – 1)2


f(x) = `{{:(x^2 + 1",",  "यदि"  0 ≤ x ≤ 1),(3 - x",",  "यदि"  1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।


[0, π] में f(x) = sinx – sin2x 


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0


यदि f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×