Advertisements
Advertisements
प्रश्न
यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।
उत्तर
यहाँ (x – a)2 + (y – b)2 = (दिया है) …(1)
x के सापेक्ष अवकलन करने पर,
`=> 2 (x - a) + 2(y - b)^2 dy/dx = 0`
`=> (x - a) + (y - b) dy/dx = 0` ...(2)
पुनः x के सापेक्ष अवकलन करने पर,
`1 + dy/dx * dy/dx + (y - b) (d^2 y)/dx^2` = 0
`1 + (dy/dx)^2 + (y - b) (d^2y)/dx^2` = 0
`=> (y - b) = - {(1 + (dy/dx)^2)/((d^2y)/dx^2)}` ...(3)
(2) में (y - b) का मान रखने पर,
`(x - a) = (1 + (dy/dx)^2)/((d^2 y)/dx^2) * dy/dx`
या `(x - a) = {(1 + (dy/dx)^2)/((d^2y)/dx^2)}(dy/dx)` ...(4)
(1) में (3) व (4) से (x - a) तथा (y - b) का मान रखने से,
`{1 + (dy/dx)^2}^2/((d^2y)/dx^2)^2 * (dy/dx)^2 + {(1 + (dy/dx)^2)/((d^2y)/dx^2)} = c^2`
`((d^2y)/dx^2)^2` से गुणा करने पर,
`[1 + (dy/dx)^2]^2 (dy/dx)^2 + [1 + (dy/dx)^2]^2`
`= c^2 ((d^2y)/dx)^2`
`=> [1 + (dy/dx)^2]^2 [(dy/dx)^2 + 1] = c^2 ((d^2y)/dx^2)^2`
`=> {1 + (dy/dx)^2}^3 = c^2 ((d^2y)/dx^2)^2`
वर्गमूल लेने पर,
`therefore {1 + (dy/dx)^2}^(3//2)/((d^2y)/dx^2)` = c ...(a और b से स्वतंत्र एक स्थिर राशि है।)
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।
[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
x = 1 पर f(x) = |x| + |x − 1|
`2^(cos^(2_x)`
`log (x + sqrt(x^2 + "a"))`
sinn (ax2 + bx + c)
(sin x)cosx
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
`sin xy + x/y` = x2 – y
tan–1(x2 + y2) = a
[0, 1] में f(x) = x(x – 1)2
f(x) = `{{:(x^2 + 1",", "यदि" 0 ≤ x ≤ 1),(3 - x",", "यदि" 1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।
[0, π] में f(x) = sinx – sin2x
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।