Advertisements
Advertisements
प्रश्न
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।
पर्याय
`3/2`
`3/(4"t")`
`3/(2"t")`
`3/4`
उत्तर
सही उत्तर `underline(3/(4"t"))` है।
व्याख्या:
x = t2 और y = t3 को देखते हुए
दोनों प्राचलिक फलन को अलग करते हुए w.r.t. t
`"dx"/"dt"` = 2t और `"dy"/"dt"` = 3t2
∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`
= `(3"t"^2)/(2"t")`
= `3/2 "t"`
⇒ `"dy"/"dx" = 3/2 "t"`
अब फिर से अलग होकर w.r.t. x
`"d"/"dx"("dy"/"dx") = 3/2 * "dt"/"dx"`
⇒ `("d"^2"y")/("dx"^2) = 3/2 * 1/(2"t")`
= `3/(4"t")`.
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
मान लीजिए कि f(x)= |cosx| है।जब,
फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
निम्नलिखित का सुमेलन कीजिए-
स्तंभ-I | स्तंभ-II |
(A) यदि फलन f(x) = `{((sin3x)/x, "यदि फलन" x = 0),("k"/2",", "यदि फलन" x = 0):}` x = 0 पर संतत है, तो k बराबर है |
(a) |x| |
(B) प्रत्येक संतत फलन अवकलनीय होता हैं | (b) सत्य |
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है | (c) 6 |
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R एक संतत फलन है |
(d) असत्य |
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
`log (x + sqrt(x^2 + "a"))`
`sin sqrt(x) + cos^2 sqrt(x)`
sinn (ax2 + bx + c)
`sin^-1 1/sqrt(x + 1)`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
[0, 1] में f(x) = x(x – 1)2
एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______