मराठी

यदि x = t2 और y = t3 है, तो dydxd2ydx2 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।

पर्याय

  • `3/2`

  • `3/(4"t")`

  • `3/(2"t")`

  • `3/4`

MCQ

उत्तर

सही उत्तर `underline(3/(4"t"))` है। 

व्याख्या:

x = t2 और y = t3 को देखते हुए

दोनों प्राचलिक फलन को अलग करते हुए w.r.t. t

`"dx"/"dt"` = 2t और  `"dy"/"dt"` = 3t2

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(3"t"^2)/(2"t")`

= `3/2 "t"`

⇒ `"dy"/"dx" = 3/2 "t"`

अब फिर से अलग होकर w.r.t. x

`"d"/"dx"("dy"/"dx") = 3/2 * "dt"/"dx"`

⇒ `("d"^2"y")/("dx"^2) = 3/2 * 1/(2"t")`

= `3/(4"t")`.

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ ११२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 94 | पृष्ठ ११२

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(5x)^(3 cos 2x)`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।


यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।


मान लीजिए कि f(x)= |cosx| है।जब,


 फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

यदि f(x) = `{{:("a"x + 1,"if"  x ≥ 1),(x + 2,"if"  x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


`log (x + sqrt(x^2 + "a"))`


`sin sqrt(x) + cos^2 sqrt(x)`


sinn (ax2 + bx + c)


`sin^-1  1/sqrt(x + 1)`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।


tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


[0, 1] में f(x) = x(x – 1)2


एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×