Advertisements
Advertisements
प्रश्न
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
उत्तर
दिया गया है: x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
दोनों प्राचलिक फलनों को अलग करना w.r.t. t
`"dx"/"dt" = ("t"^2 * "d"/"dt" (1 + log "t") - (1 + log "t") * "d"/"dt" ("t"^2))/"t"^4`
= `("t"^2 * (1/"t") - (1 + log "t") * 2"t")/"t"^4`
= `("t" - (1 + log "t") * 2"t")/"t"^4`
= `("t"[1 - 2 - 2 log "t"])/"t"^4`
= `(-(1 + 2 log "t"))/"t"^3`
y = `(3 + 2 log "t")/"t"`
`"dy"/"dt" = ("t" * "d"/"dt" (3 + 2 log "t") - (3 + 2 log "t") * "d"/"dt" ("t"))/"t"^2`
= `("t"(2/"t") - (3 + 2 log "t")* 1)/"t"^2`
= `(2 - 3 - 2 log "t")/"t"^2`
= `(-(1 + 2 log "t"))/"t"^2`
∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`
= `((-(1 + 2 log "t"))/"t"^2)/((-(1 + 2 log "t"))/"t"^3)`
= `"t"^3/"t"^2`
= t
अत: `"dy"/"dx"` = t.
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`
यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।
उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx द्वारा दिया जाने वाला फलन अवकलनीय है,
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
y = |x – 1| एक संतत फलन है।
a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "यदि" x < 4),("a" + "b"",", "यदि" x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि" x > 4):}`
बिंदु x = 4 पर संतत है।
`log [log(logx^5)]`
sinn (ax2 + bx + c)
`cos(tan sqrt(x + 1))`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
(x2 + y2)2 = xy
[1, 5] में f(x) = `sqrt(25 - x^2)`
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।
x3 के सापेक्ष x2 अवकलज ______ है।
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______