मराठी

X = tt1+logtt2, y = tt3+2logtt - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`

बेरीज

उत्तर

दिया गया है: x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`

दोनों प्राचलिक फलनों को अलग करना w.r.t. t

`"dx"/"dt" = ("t"^2 * "d"/"dt" (1 + log "t") - (1 + log "t") * "d"/"dt" ("t"^2))/"t"^4`

= `("t"^2 * (1/"t") - (1 + log "t") * 2"t")/"t"^4`

= `("t" - (1 + log "t") * 2"t")/"t"^4`

= `("t"[1 - 2 - 2 log "t"])/"t"^4`

= `(-(1 + 2 log "t"))/"t"^3`

y = `(3 + 2 log "t")/"t"`

`"dy"/"dt" = ("t" * "d"/"dt" (3 + 2 log "t") - (3 + 2 log "t") * "d"/"dt" ("t"))/"t"^2`

= `("t"(2/"t") - (3 + 2 log "t")* 1)/"t"^2`

= `(2 - 3 - 2 log "t")/"t"^2`

= `(-(1 + 2 log "t"))/"t"^2`

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `((-(1 + 2 log "t"))/"t"^2)/((-(1 + 2 log "t"))/"t"^3)`

= `"t"^3/"t"^2`

= t

अत: `"dy"/"dx"` = t.

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 48 | पृष्ठ १०८

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(3x2 – 9x + 5)9


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`


यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।


उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx  द्वारा दिया जाने वाला फलन अवकलनीय है,


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।


y = |x – 1| एक संतत फलन है।


a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "यदि"  x < 4),("a" + "b"",",  "यदि"  x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि"  x > 4):}`

बिंदु x = 4 पर संतत है।


`log [log(logx^5)]`


sinn (ax2 + bx + c)


`cos(tan sqrt(x + 1))`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


(x2 + y2)2 = xy


[1, 5] में f(x) = `sqrt(25 - x^2)` 


यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


x3 के सापेक्ष  x2 अवकलज ______ है।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×