Advertisements
Advertisements
प्रश्न
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
उत्तर
हमें प्राप्त हैः y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` है,
जहाँ 0 < x < 1
x = sinA और `sqrt(x)` = sinB रखने पर
y = `sin^-1{sin"A" sqrt(1 - sin^2"B") - sin"B"sqrt(1 - sin^2"A")}`
= `sin^-1 {sin "A" cos "B" - sin "B" cos "A"}`
= `sin^-1 {sin("A" - "B")}`
= A – B
इसप्रकार, y = `sin^-1x - sin^1 sqrt(x)`
x के सापेक्ष अवकलित करने पर
`("d"y)/("d"x) = 1/sqrt(1 - x^2) - 1/sqrt(1 - sqrt((x)^2)) * "d"/("d"x) (sqrt(x))`
= `1/sqrt(1 - x^2) - 1/(2sqrt(x) sqrt(1 - x))`.
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
k का वह मान, जो f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,
फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है
यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।
y = |x – 1| एक संतत फलन है।
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
`8^x/x^8`
`sin^-1 1/sqrt(x + 1)`
(x + 1)2(x + 2)3(x + 3)4
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
फलन f(x) = `(4 - x^2)/(4x - x^3)`
यदि f(x) = `x^2 sin 1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।