Advertisements
Advertisements
प्रश्न
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
उत्तर
हमारे पास, f(x) = `x(x + 3)e^((–x)/2)`
Since बहुपद फलन x(x + 3) और घातांकीय फलन `"e"^((-x)/2)` R में संतत और अवकलनीय हैं, दिया गया फलन, f(x) भी संतत और R में अवकलनीय है
साथ ही f(0) = f(–3) = 0
अतः रोले के प्रमेय की शर्तें संतुष्ट हैं।
इसलिए, एक वास्तविक संख्या c ∈ (–3, 0) इस प्रकार मौजूद है कि f'(c) = 0
अब f(x) = `(x^2 + 3x)"e"^((-x)/2)`
∴ f'(x) = `(2x + 3)"e"^((-x)/2) - 1/2 "e"^((-x)/2) (x^2 + 3x)`
= `- 1/2 "e"^((-x)/2) (x^2 + 3x - 4x - 6)`
= `-1/2 "e"^((-x)/2)(x^2 - x - 6)`
तो, f'(x) = 0
⇒ `- 1/2 "e"^((-x)/2) ("c" + 2)("c" - 3)` = 0
⇒ c = –2 ∈ (–3, 0)
इसलिए, रोले के प्रमेय को सत्यापित किया गया है।
APPEARS IN
संबंधित प्रश्न
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।
[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "यदि" x < 4),("a" + "b"",", "यदि" x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि" x > 4):}`
बिंदु x = 4 पर संतत है।
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`8^x/x^8`
`sin^-1 1/sqrt(x + 1)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
[0, 1] में f(x) = x(x – 1)2
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
f(x) = `{{:(x^2 + 1",", "यदि" 0 ≤ x ≤ 1),(3 - x",", "यदि" 1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।
[0, π] में f(x) = sinx – sin2x
[1, 5] में f(x) = `sqrt(25 - x^2)`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
यदि f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?
मान लीजिए f(x) = |sin x| है, तब
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______