Advertisements
Advertisements
प्रश्न
मान लीजिए f(x) = |sin x| है, तब
पर्याय
f प्रत्येक स्थान पर अवकलनीय है।
f प्रत्येक स्थान पर संतत है, परंतु x = nπ, n ∈ Z पर अवकलनीय नहीं है।
f प्रत्येक स्थान पर संतत है परंतु x = `(2"n" + 1) pi/2`, n ∈ Z पर अवकलनीय नहीं है।
इनमें से कोई नहीं।
उत्तर
सही उत्तर f प्रत्येक स्थान पर संतत है, परंतु x = nπ, n ∈ Z पर अवकलनीय नहीं है।
व्याख्या:
यह देखते हुए कि: f(x) = |sin x|
माना g(x) = sin x और t(x) = |x|
∴ f(x) = tog(x) = t[g(x)] = t(sin x) = |sin x|
जहाँ g(x) और t(x) दोनों संतत हैं।
∴ f(x) = got(x) संतत है लेकिन t(x) x = 0 पर भिन्न नहीं है।
तो, f(x) sin x = 0 पर संतत नहीं है
⇒ x = nπ, n ∈ Z.
APPEARS IN
संबंधित प्रश्न
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
sinx2 + sin2x + sin2(x2)
(x + 1)2(x + 2)3(x + 3)4
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[1, 4] में f(x) = `1/(4x - 1)`
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
यदि f(x) = `x^2 sin 1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।