मराठी

Tan-1(1+x2+1-x21+x2-1-x2),-1<x<1,x≠0 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`

बेरीज

उत्तर

माना y = `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`

x2 = cos 2θ रखने पर

∴ θ = `1/2 cos^-1 x^2`

y = `tan^-1 ((sqrt(1 + cos 2theta) + sqrt(1 - cos 2theta))/(sqrt(1 + cos 2theta) - sqrt(1 - cos 2theta)))`

⇒ y = `tan^-1 ((sqrt(2cos^2theta) + sqrt(2sin^2theta))/(sqrt(2cos^2theta) - sqrt(2sin^2theta)))` 

⇒ y = `tan ((sqrt(2) cos theta + sqrt(2) sin theta)/(sqrt(2) cos theta - sqrt(2) sin theta))`

⇒ y = `tan^-1 ((cos theta + sin theta)/(cos theta - sin theta))`

⇒ y = `tan^-1 [((costheta)/(costheta) + (sintheta)/(costheta))/((costheta)/(costheta) - (sintheta)/(costheta))]`

⇒ y = `tan^-1 [(1 + tan theta)/(1 - tan theta)]`

⇒ y = `tan^-1 [(tan  pi/4 + tan theta)/(1 - tan  pi/4 * tan theta)]`

⇒ y = `tan^-1 [tan (pi/4 + theta)]`

⇒ y = `pi/4 + theta`

⇒ y = `pi/4 + 1/2 cos^-1 x^2`

दोनों पक्षों में अंतर करना w.r.t. x

`"dy"/"dx" = "d"/"dx" (pi/4) + 1/2  "d"/"dx" (cos^-1 x^2)`

= `0 + 1/2 xx (-1)/sqrt(1 - x^4) * "d"/"dx" (x^2)`

= `(-1.2x)/(2sqrt(1 - x^4)`

= `- x/sqrt(1 - 4x^4)`

इसलिए, `"dy"/"dx" = - x/sqrt(1 - x^4)`

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 43 | पृष्ठ १०८

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।


यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।


उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,


उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx  द्वारा दिया जाने वाला फलन अवकलनीय है,


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।


 cos x के सापेक्ष sin x का अवकलज ______ है।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ  t = `1/(x - 1)` है।


`log (x + sqrt(x^2 + "a"))`


sinn (ax2 + bx + c)


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


`[0, pi/2]` esa f(x) = `sin^4x + cos^4x` 


[1, 5] में f(x) = `sqrt(25 - x^2)` 


माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।


यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।


 यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×