हिंदी

Tan-1(1+x2+1-x21+x2-1-x2),-1<x<1,x≠0 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`

योग

उत्तर

माना y = `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`

x2 = cos 2θ रखने पर

∴ θ = `1/2 cos^-1 x^2`

y = `tan^-1 ((sqrt(1 + cos 2theta) + sqrt(1 - cos 2theta))/(sqrt(1 + cos 2theta) - sqrt(1 - cos 2theta)))`

⇒ y = `tan^-1 ((sqrt(2cos^2theta) + sqrt(2sin^2theta))/(sqrt(2cos^2theta) - sqrt(2sin^2theta)))` 

⇒ y = `tan ((sqrt(2) cos theta + sqrt(2) sin theta)/(sqrt(2) cos theta - sqrt(2) sin theta))`

⇒ y = `tan^-1 ((cos theta + sin theta)/(cos theta - sin theta))`

⇒ y = `tan^-1 [((costheta)/(costheta) + (sintheta)/(costheta))/((costheta)/(costheta) - (sintheta)/(costheta))]`

⇒ y = `tan^-1 [(1 + tan theta)/(1 - tan theta)]`

⇒ y = `tan^-1 [(tan  pi/4 + tan theta)/(1 - tan  pi/4 * tan theta)]`

⇒ y = `tan^-1 [tan (pi/4 + theta)]`

⇒ y = `pi/4 + theta`

⇒ y = `pi/4 + 1/2 cos^-1 x^2`

दोनों पक्षों में अंतर करना w.r.t. x

`"dy"/"dx" = "d"/"dx" (pi/4) + 1/2  "d"/"dx" (cos^-1 x^2)`

= `0 + 1/2 xx (-1)/sqrt(1 - x^4) * "d"/"dx" (x^2)`

= `(-1.2x)/(2sqrt(1 - x^4)`

= `- x/sqrt(1 - 4x^4)`

इसलिए, `"dy"/"dx" = - x/sqrt(1 - x^4)`

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 43 | पृष्ठ १०८

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।


यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


मान लीजिए कि f(x)= |cosx| है।जब,


 x = 2 पर f(x) = `{{:(3x + 5",", "यदि"  x ≥ 2),(x^2",", "यदि"  x < 2):}` 


 x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}` 


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "यदि"  0 ≤ x ≤ 1):}` 


सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`  से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।


फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ  t = `1/(x - 1)` है।


दर्शाइए कि फलन  f(x) = |sin x + cos x| बिंदु x = π पर संतत है।


x = 2 पर, f(x) = `{{:(x[x]",",  "यदि"  0 ≤ x < 2),((x - 1)x",",  "यदि"  2 ≤ x < 3):}`  


sinmx . cosnx


(x + 1)2(x + 2)3(x + 3)4


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


(x2 + y2)2 = xy


f(x) = `{{:(x^2 + 1",",  "यदि"  0 ≤ x ≤ 1),(3 - x",",  "यदि"  1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।


[0, π] में f(x) = sinx – sin2x 


यदि f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो


 यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×