हिंदी

यदि f(x) = m,यदिn,यदि{mx+1, यदि x≤π2sinx+n, यदि x>π2 बिंदु x = π2 पर संतत है तो - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो

विकल्प

  • m = 1, n = 0

  • m = `("n"pi)/2 + 1`

  • n = `("m"pi)/2`

  • m = n = `pi/2`

MCQ

उत्तर

सही उत्तर n = `("m"pi)/2` है।

व्याख्या:

दिया गया: f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}`, x = `pi/2` पर संतत है 

L.H.L. = `lim_(x -> pi^-/2) ("m"x + 1)`

= `lim_("h" -> 0) ["m"(pi/2 - "h") + 1]`

= `("m"pi)/2 + 1`

R.H.L. = `lim_(x -> pi^+/2) (sinx + "n")`

= `lim_("h" -> 0) [sin(pi/2 + "h") + pi]`

= `lim_("h" -> 0) cos "h" + "n"`

= 1 + n

जब f(x) x = `pi/2` पर संतत होता है

∴ L.H.L. = R.H.L.

`("m"pi)/2 + 1` = 1 + n

⇒ n = `("m"pi)/2`.

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ ११२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 89 | पृष्ठ ११२

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।


यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


 यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


k का वह मान, जो f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,


उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।


 cos x के सापेक्ष sin x का अवकलज ______ है।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


x = 0 पर f(x) = `{{:(|x|cos  1/x",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`sin sqrt(x) + cos^2 sqrt(x)`


sinn (ax2 + bx + c)


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`


[1, 4] में f(x) = `1/(4x - 1)`


[0, 1] में f(x) = x3 – 2x2 – x + 3 


मान लीजिए f(x) = |sin x| है, तब


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


x3 के सापेक्ष  x2 अवकलज ______ है।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×