Advertisements
Advertisements
प्रश्न
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______
उत्तर
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = `underline((sqrt(3) + 1)/2)`
व्याख्या:
दिया गया है: f(x) = |cosx – sinx|
हम जानते हैं कि sin x > cos x यदि x ∈ `(pi/4, pi/2)`
⇒ cos x – sin x < 0
∴ f(x) = – (cos x – sin x)
f'(x) = – (– sin x – cos x)
⇒ f'(x) = (sin x + cos x)
∴ `"f'"(pi/3) = sin pi/3 + cos pi/3`
= `sqrt(3)/2 + 1/2`
= `(sqrt(3) + 1)/2`
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
यदि ex + ey = ex+y दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
k का वह मान, जो f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
x = 0 पर f(x) = `{{:(|x|cos 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "यदि" x < 4),("a" + "b"",", "यदि" x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि" x > 4):}`
बिंदु x = 4 पर संतत है।
फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
`2^(cos^(2_x)`
`log [log(logx^5)]`
sinx2 + sin2x + sin2(x2)
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[0, 1] में f(x) = x3 – 2x2 – x + 3
[0, π] में f(x) = sinx – sin2x
[1, 5] में f(x) = `sqrt(25 - x^2)`
p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` बिंदु x = 1 पर अवकलनीय हो।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।
x3 के सापेक्ष x2 अवकलज ______ है।
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______