हिंदी

(x2 + y2)2 = xy - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

(x2 + y2)2 = xy

योग

उत्तर

दिया है कि: (x2 + y2)2 = xy

⇒ x4 + y4 + 2x2y2 = xy

दोनों पक्षों में अंतर करना w.r.t. x

`"d"/"dx"(x^4) + "d"/"dx"(y^4) + 2*"d"/"dx"(x^2y^2) = "d"/"dx"(xy)`

⇒ `4x^3 + 4y^3 * "dy"/"dx" + 2[x^2*2y*"dy"/"dx" + y^2*2x] = x"dy"/"dx" + y*1`

⇒ `4x^3 + 4y^3 * "dy"/"dx" + 4x^2y * "dy"/"dx" + 4xy^2 = x "dy"/"dx" + y`

⇒ `4y^3 "dy"/"dx" + 4x^2y "dy"/"dx" - x "dy"/"dx" = y - 4x^3 - 4xy^2`

⇒ `(4y^3 + 4x^2y - x)"dy"/"dx" = y - 4x^3 - 4xy^2`

⇒ `"dy"/"dx" = (y - 4x^3 - 4xy^2)/(4y^3 + 4x^2y - x)`

इसलिए, `"dy"/"dx" =  (y - 4x^3 - 4xy^2)/(4x^2y + 4x^2y - x)`.

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 57 | पृष्ठ १०९

संबंधित प्रश्न

क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(log x)log x, x > 1


यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।


यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।


अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है 


उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।


x के सापेक्ष log10 का अवकलज ______ है।


यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।


 x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}` 


फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`log (x + sqrt(x^2 + "a"))`


 यदि x = asin2t (1 + cos2t)  और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`


tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


[–1, 1] में f(x) = log(x2 + 2) – log3 


[0, 1] में f(x) = x3 – 2x2 – x + 3 


यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×