Advertisements
Advertisements
प्रश्न
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
उत्तर
हमारे पास, f(x) = x3 + 2x2 – 1
सांतत्य के लिए at x = 1
∴ R.H.L. = `lim_(x -> 1^+) "f"(x)`
= `lim_("h" -> 0) "f"(1 + "h")`
= `lim_("h" -> 0) [(1 + "h")^3 + 2(1 + "h")^2 - 1]` = 2
और L.H.L. = `lim_(x -> 1^-) "f"(x)`
= `lim_("h" -> 0) "f"(1 - "h")`
= `lim_("h" -> 0)[(1 - "h")^3 + 2(1 - "h")^2 - 1]` = 2
साथ ही f(1) = 1 + 2 – 1 = 2
अत: `lim_(x -> 1^+) "f"(x) = lim_(x -> 1^-) "f"(x)` = f(1)
अत: f(x) x = 1 संतत है।
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x = 1 पर f(x) = |x| + |x − 1|
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`2^(cos^(2_x)`
`log (x + sqrt(x^2 + "a"))`
`sin sqrt(x) + cos^2 sqrt(x)`
sinx2 + sin2x + sin2(x2)
(x + 1)2(x + 2)3(x + 3)4
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[1, 4] में f(x) = `1/(4x - 1)`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
यदि f(x) = `x^2 sin 1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।
x3 के सापेक्ष x2 अवकलज ______ है।
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।