हिंदी

Sinxy+xy = x2 – y - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`sin xy + x/y` = x2 – y

योग

उत्तर

दिया गया है: `sin xy + x/y` = x2 – y

दोनों पक्षों में अंतर करना w.r.t. x

`"d"/"dx" sin(xy) + "d"/"dx"(x/y) = "d"/"dx" (x^2) - "d"/"dx"(y)`

⇒ `cos xy * "d"/"dx" (xy) + (y * "d"/"dx" * x - x * "dy"/"dx")/y^2 = 2x - "dy"/"dx"`

⇒ `cos y [x * "dy"/"dx" + y * 1] + ("y"*1)/"y"^2 - x/y^2 * "dy"/"dx" = 2x - "dy"/"dx"`

⇒ `x cos xy * "dy"/"dx" + y cos xy + 1/y - x/y^2 "dy"/"dx" = 2x - "dy"/"dx"`

⇒ `x cos xy * "dy"/"dx" - x/y^2 * "dy"/"dx" + "dy"/"dx" = -y cos xy - 1/y + 2x`

⇒ `[x cos xy - x/y^2 + 1] "dy"/"dx" = 2x - y cos xy - 1/y`

⇒ `([xy^2 cos xy - x + y^2])/y^2 "dy"/"dx" = (2xy - y^2 cos xy - 1)/y`

⇒ `"dy"/"dx" = (2xy - y^2 cos xy - 1)/y xx y^2/(xy^2 cos xy - x + y^2)`

= `(2xy^2 - y^3 cos(xy) - y)/(xy^2 cos (xy) - x + y^2)`

अत: `"dy"/"dx" = (2xy^2 - y^3 cos(xy) - y)/(xy^2 cos (xy) - x + y^2)`.

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 54 | पृष्ठ १०९

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


यदि ex + ey = ex+y  दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


 यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


x के सापेक्ष log10 का अवकलज ______ है।


एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


x = 2 पर, f(x) = `{{:(1 + x",",  "यदि"  x ≤ 2),(5 - x",",  "यदि"  x > 2):}` 


दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।


`8^x/x^8`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


(x2 + y2)2 = xy


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`


[0, 1] में f(x) = x(x – 1)2


`[0, pi/2]` esa f(x) = `sin^4x + cos^4x` 


[0, π] में f(x) = sinx – sin2x 


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0


मान लीजिए f(x) = |sin x| है, तब


 यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×