Advertisements
Advertisements
प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।
उत्तर
माना y = xx + xa + ax + aa
x के सापेक्ष अवकलन करने पर,
`dy/dx = d/dx (x^x) + d/dx (x^a) + d/dx (a^x) + (a^a) d/dx (1)`
`= d/dx (x^x) + ax^(a - 1) + a^x log a + 0` ...(1)
u = xx (माना)
दोनों तरफ log लेने पर,
log u = x log x
x के सापेक्ष अवकलन करने पर,
`1/u (du)/dx = x d/dx log x + log x d/dx (x)`
`= x * 1/x + log x = (1 + log x)`
`therefore (du)/dx = u (1 + log x) = x^x (1 + log x)`
अर्थात `d/dx (x^x) = (du)/dx = x^x (1 + log x)`
`d/dx (x^x)` का मान समीकरण (1) में रखने पर,
`dy/dx = x^x (1 + log x) + ax^(a - 1) + a^x log a`
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
मान लीजिए कि f(x)= |cosx| है।जब,
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ t = `1/(x - 1)` है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
`8^x/x^8`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
(x2 + y2)2 = xy
[0, 1] में f(x) = x3 – 2x2 – x + 3
[1, 5] में f(x) = `sqrt(25 - x^2)`
p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` बिंदु x = 1 पर अवकलनीय हो।
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।
दो संतत फलनों का संयोजन एक संतत फलन होता है।