English

X = 0 पर, f(x) = ,यदि,यदि{x2sin 1x, यदि x≠00,यदि x=0 - Mathematics (गणित)

Advertisements
Advertisements

Question

x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`

Sum

Solution

दिया गया है कि, x = 0 पर f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`  

भिन्नता के लिए हम जानते हैं कि:

Lf'(c) = Rf'(c)

∴ Lf'(0) = `lim_("h" -> 0)  ("f"(0 - "h") - "f"(0))/(-"h")`

= `lim_("h" -> 0) ((0 - "h")^2 sin  1/((0 - "h")) - 0)/(-"h")`

= `("h"^2 sin  (- 1/"h"))/(-"h")`

= `"h"* sin (1/"h")`

= `0 xx [-1 ≤ sin  (1/"h") ≤ 1]`

= 0

Rf'(0) = `lim_("h" -> 0)  ("f"(0 + "h") - "f"(0))/"h"`

= `lim_("h" -> 0)  ((0 + "h")^2 sin (1/(0 + "h") - 0))/"h"`

= `lim_("h" -> 0) ("h"^2 sin (1/"h"))/"h"`

= `lim_("h" -> 0) "h" * sin (1/"h")`

= `0 xx [-1 ≤ sin (1/"h") ≤ 1]`

= 0

अतः, Lf'(0) = Rf'(0) = 0

अतः, f(x) x = 0 पर अवकलनीय है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - प्रश्नावली [Page 107]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 21 | Page 107

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।


यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।


मान लीजिए कि f(x)= |cosx| है।जब,


यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है 


x के सापेक्ष log10 का अवकलज ______ है।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


x = 0 पर f(x) = `{{:(|x|cos  1/x",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "यदि"  x < 4),("a" + "b"",",  "यदि"  x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि"  x > 4):}`

बिंदु x = 4 पर संतत है।


दर्शाइए कि फलन  f(x) = |sin x + cos x| बिंदु x = π पर संतत है।


`2^(cos^(2_x)`


`sin^-1  1/sqrt(x + 1)`


tan–1(x2 + y2) = a


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


[– 2, 2] में f(x) = `sqrt(4 - x^2)` 


रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[0, 1] में f(x) = x3 – 2x2 – x + 3 


[1, 5] में f(x) = `sqrt(25 - x^2)` 


माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


दो संतत फलनों का संयोजन एक संतत फलन होता है।


त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×