English

त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं। - Mathematics (गणित)

Advertisements
Advertisements

Question

त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।

Options

  • सत्य

  • असत्य

MCQ
True or False

Solution

यह कथन सत्य है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - प्रश्नावली [Page 113]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 105 | Page 113

RELATED QUESTIONS

दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।


`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


फलन f(x) = |x| + |x – 1|


उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


x = 2 पर, f(x) = `{{:(1 + x",",  "यदि"  x ≤ 2),(5 - x",",  "यदि"  x > 2):}` 


दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।


(x + 1)2(x + 2)3(x + 3)4


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


 यदि x = asin2t (1 + cos2t)  और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`


tan–1(x2 + y2) = a


(x2 + y2)2 = xy


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


f(x) = `{{:(x^2 + 1",",  "यदि"  0 ≤ x ≤ 1),(3 - x",",  "यदि"  1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[1, 5] में f(x) = `sqrt(25 - x^2)` 


यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।


फलन f(x) = `(4 - x^2)/(4x - x^3)`


x3 के सापेक्ष  x2 अवकलज ______ है।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


दो संतत फलनों का संयोजन एक संतत फलन होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×