Advertisements
Advertisements
Question
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
Solution
f(x) x = 2 पर अवकलनीय है यदि Lf'(2) = Rf'(2)
∴ Lf'(2) = `lim_("h" -> 0) ("f"(2 - "h") - "f"(2))/(-"h")`
= `lim_("h" -> 0) ((1 + 2 - "h") - (1 + 2))/(-"h")`
= `lim_("h" -> 0) (3 - "h" - 3)/(-"h')`
= `(-"h")/(-"h")`
= 1
Rf'(2) = `lim_("h" -> 0) ("f"(2 + "h") - "f"(2))/"h"`
= `lim_("h" -> 0) ([5 - (2 + "h")] - (1 + 2))/"h"`
= `lim_("h" -> 0) (3 - "h" - 3)/"h"`
= `(-"h")/"h"`
= –1
अतः, Lf'(2) ≠ Rf'(2)
अतः x = 2 पर f(x) अवकलनीय नहीं है।
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु x = 0 पर असंतत है।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
निम्नलिखित का सुमेलन कीजिए-
स्तंभ-I | स्तंभ-II |
(A) यदि फलन f(x) = `{((sin3x)/x, "यदि फलन" x = 0),("k"/2",", "यदि फलन" x = 0):}` x = 0 पर संतत है, तो k बराबर है |
(a) |x| |
(B) प्रत्येक संतत फलन अवकलनीय होता हैं | (b) सत्य |
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है | (c) 6 |
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R एक संतत फलन है |
(d) असत्य |
एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।
x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि" x ≠ 2),(5",", "यदिf" x = 2):}`
x = 0 पर f(x) = `{{:(|x|cos 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "यदि" 0 ≤ x ≤ 1):}`
`2^(cos^(2_x)`
`log [log(logx^5)]`
sinn (ax2 + bx + c)
sinx2 + sin2x + sin2(x2)
`sin^-1 1/sqrt(x + 1)`
sinmx . cosnx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
(x2 + y2)2 = xy
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
[0, π] में f(x) = sinx – sin2x
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
दो संतत फलनों का संयोजन एक संतत फलन होता है।