Advertisements
Advertisements
Question
sinmx . cosnx
Solution
माना y = sinmx . cosnx
∴ `"dy"/"dx" = "d"/"dx" [(sin x)^"m" * (cos x)^"n"]`
= `(sin x)^"m" "d"/"dx" (cos x)^"n" + (cos x)^"n" "d"/"dx" (sin x)^"m"`
= `(sin x)^"m" "n"(cos x)^("n" - 1) "d"/"dx" (cos x) + (cos x)^"n" "m"(sin x)^("m" - 1) "d"/"dx" (sin x)`
= `(sin x)^"m" "n"(cos x)^("n" - 1) (- sin x) + (cos x)^"n" "m"(sin x)^("m" - 1) cos x`
= sinm x cosn x[–n tan x + m cot x]
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
यदि ex + ey = ex+y दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।
यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`
[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
k का वह मान, जो f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
x के सापेक्ष log10 का अवकलज ______ है।
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
`log (x + sqrt(x^2 + "a"))`
`sin sqrt(x) + cos^2 sqrt(x)`
sinx2 + sin2x + sin2(x2)
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
tan–1(x2 + y2) = a
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
[1, 5] में f(x) = `sqrt(25 - x^2)`
माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।
यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।