Advertisements
Advertisements
Question
(x + 1)2(x + 2)3(x + 3)4
Solution
माना y = (x + 1)2(x + 2)3(x + 3)4
∴ log y = `log [(x + 1)^2 * (x + 2)^3 (x + 3)^4]`
= `2log (x + 1) + 3 log (x + 2) + 4 log (x + 3)`
विभेदक w.r.t. x दोनों तरफ, हमें मिलता है
`1/y * "dy"/"dx" = 2/(x + 1) + 3/(x + 2) + 4/(x + 3)`
∴ `"dy"/"dx" = y[2/(x + 1) + 3/(x + 2) + 4/(x + 3)]`
= `(x + 1)^2 * (x + 2)^3 * (x + 3)^4 [2/((x + 1)) + 3/((x + 2)) + 4/((x + 3))]`
= `(x + 1)^2 * (x + 2)^3 * (x + 3)^4 xx [(2(x + 3)(x + 3) + 3(x + 1)(x + 3) + 4(x + 1)(x + 2))/((x + 1)(x + 2)(x + 3))]`
= (x + 1)(x + 2)2(x + 3)3[9x2 + 34x + 29]
APPEARS IN
RELATED QUESTIONS
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
यदि फलन f(x) = `{{:(sinx/x + cosx",", "यदि" x ≠ 0),("k"",", "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
निम्नलिखित का सुमेलन कीजिए-
स्तंभ-I | स्तंभ-II |
(A) यदि फलन f(x) = `{((sin3x)/x, "यदि फलन" x = 0),("k"/2",", "यदि फलन" x = 0):}` x = 0 पर संतत है, तो k बराबर है |
(a) |x| |
(B) प्रत्येक संतत फलन अवकलनीय होता हैं | (b) सत्य |
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है | (c) 6 |
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R एक संतत फलन है |
(d) असत्य |
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
x = 1 पर f(x) = |x| + |x − 1|
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
sinn (ax2 + bx + c)
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
`sin xy + x/y` = x2 – y
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[0, 1] में f(x) = x3 – 2x2 – x + 3
माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।
p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` बिंदु x = 1 पर अवकलनीय हो।
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
मान लीजिए f(x) = |sin x| है, तब
यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।