Advertisements
Advertisements
Question
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
Solution
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` – 1
व्याख्या:
दिया गया है: `sqrt(x) + sqrt(y)` = 1
दोनों पक्षों में अंतर करना w.r.t. x
`1/(2sqrt(x)) + 1/(2sqrt(y)) * "dy"/"dx"` = 0
⇒ `1/sqrt(x) + 1/sqrt(y) "dy"/"dx"` = 0
⇒ `1/sqrt(y) "dy"/"dx" = (-1)/sqrt(x)`
⇒ `"dy"/"dx" = (-sqrt(y))/sqrt(x)`
∴ `(1/4, 1/4) पर "dy"/"dx" = - sqrt(1/4)/sqrt(1/4)`
= – 1.
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।
यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
x के सापेक्ष log10 का अवकलज ______ है।
यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।
एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ t = `1/(x - 1)` है।
`cos(tan sqrt(x + 1))`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`sin xy + x/y` = x2 – y
[0, 1] में f(x) = x(x – 1)2
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
[0, 1] में f(x) = x3 – 2x2 – x + 3
यदि f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?
मान लीजिए f(x) = |sin x| है, तब
x3 के सापेक्ष x2 अवकलज ______ है।
दो संतत फलनों का संयोजन एक संतत फलन होता है।