English

यदि y = sinx+y है, तो dydxdydx बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

Question

 यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।

Options

  • `cos/(2y - 1)`

  • `cosx/(1 - 2y)`

  • `sinx/(1 - 2y)`

  • `sinx/(2y - 1)`

MCQ

Solution

सही उत्तर `underline(cos/(2y - 1))` है। 

व्याख्या:

यह देखते हुए: y = `sqrt(sinx + y)`

दोनों पक्षों को अलग करते हुए w.r.t. x

`"dy"/"dx" = 1/(2sqrt(sinx + y)) * "d"/"dx" (sin x + y)`

⇒ `"dy"/"dx" = 1/(2sqrt(sinx + y)) * (cos x + "dy"/"dx")`

⇒ `"dy"/"dx" = 1/(2y) * [cos x + "dy"/"dx"]`

⇒ `"dy"/"dx" = cosx/(2y) + 1/(2y) * "dy"/"dx"`

⇒ `"dy"/"dx" - 1/(2y) * "dy"/"dx" = cosx/(2y)`

⇒ `(1 - 1/(2y))"dy"/"dx" = cosx/(2y)`

⇒ `((2y - 1)/(2y)) "dy"/"dx" = cosx/(2y)`

⇒ `"dy"/"dx" = cosx/(2y) xx (2y)/(2y - 1)`

⇒ `"dy"/"dx" = cosx/(2y - 1)`

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - प्रश्नावली [Page 112]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 92 | Page 112

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।


यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।


फलन f(x) = |x| + |x – 1|


यदि f(x) = `{{:("a"x + 1,"if"  x ≥ 1),(x + 2,"if"  x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


y = |x – 1| एक संतत फलन है।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


`8^x/x^8`


sinn (ax2 + bx + c)


`cos(tan sqrt(x + 1))`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


tan–1(x2 + y2) = a


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0


यदि f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो


फलन  f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।


x3 के सापेक्ष  x2 अवकलज ______ है।


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×