Advertisements
Advertisements
Question
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
Solution
दिया गया है: x = 3 cosθ – 2 cos3θ और y = 3sinθ – 2 sin3θ.
दोनों प्राचलिक फलनों को अलग करना w.r.t. θ
`"dx"/("d"theta) = -3 sin theta - 6cos^2theta * "d"/("d"theta) (cos theta)`
= – 3 sin θ – 6 cos2θ . (– sin θ)
= – 3 sin θ + 6 cos2θ . sin θ
`"dy"/("d"theta) = 3 os theta - 6 sin^2theta * "d"/("d"theta) (sin theta)`
= = 3 cos θ – 6 sin2θ . cos θ क्योंकि
∴ `"dy"/"dx" = ("dy"/("d"theta))/("dx"/("d"theta))`
= `(3 cos theta - 6 sin^2theta cos theta)/(-3sin theta + 6cos^2 theta * sin theta)`
⇒ `"dy"/"dx" = (cos theta (3 - 6sin^2theta))/(sintheta(-3 + 6 cos^2 theta))`
= `(costheta[3 - 6(1 - cos^2theta)])/(sintheta[-3 + 6cos^2theta])`
= `cot theta ((3 - 6 + 6 cos^2 theta)/(-3 + 6 cos^2theta))`
= `cot theta ((-3 + 6 cos^2theta)/(-3 + 6 cos^2 theta))`
= cot θ
∴ `"dy"/"dx"` = cot θ.
APPEARS IN
RELATED QUESTIONS
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।
यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`
यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।
दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु x = 0 पर असंतत है।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
फलन f(x) = |x| + |x – 1|
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
`2^(cos^(2_x)`
sinn (ax2 + bx + c)
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______