Advertisements
Advertisements
Question
यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।
Solution
हमें प्राप्त है: y = tanx + secx.
x के सापेक्ष अवकलित करने पर,
`("d"y)/("d"x)` = sec2x + secx tanx
= `1/(cos2x) + sinx/(cos^2x)`
= (1 + sinx)/(cos^2x)`
= `(1 + sinx)/((1 + sinx)(1 - sinx))`
इस प्रकार, `("d"y)/("d"x) = 1/(1 - sin )`.
अब, x के सापेक्ष पुन: अवकलित करने पर
`("d"^2y)/("d"x^2) = (-(cos x))/(1 - sin x)^2`
= `cosx/(1 - sin x)^2`
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।
यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।
cos x के सापेक्ष sin x का अवकलज ______ है।
x = 1 पर f(x) = |x| + |x − 1|
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
`2^(cos^(2_x)`
(sin x)cosx
(x + 1)2(x + 2)3(x + 3)4
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
sec(x + y) = xy
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
f(x) = `{{:(x^2 + 1",", "यदि" 0 ≤ x ≤ 1),(3 - x",", "यदि" 1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।