Advertisements
Advertisements
Question
sec(x + y) = xy
Solution
दिया गया है कि: sec(x + y) = xy
दोनों पक्षों में अंतर करना w.r.t. x
`"d"/"dx" sec(x + y) = "d"/"dx"(xy)`
⇒ `sec(x + y) tan(x + y) * "d"/"dx"(x + y) = x*"dy"/"dx" + y*1`
⇒ `sec(x + y)*tan(x + y) (1 + "dy"/"dx") = x*"dy"/"dx" + y`
⇒ `sec(x + y)*tan(x + y) + sec(x + y)*"dy"/"dx"` = y – sec(x + y).tan(x + y)
⇒ `[sec(x + y)* tan(x + y) - x] "dy"/"dx"` = = y – sec(x + y).tan(x + y)
⇒ `"dy"/"dx" = (y - sec(x + y)*tan(x + y))/(sec(x + y)*tan(x + y) - x)`
इसलिए, `"dy"/"dx" = (y - sec(x + y)*tan(x + y))/(sec(x + y)*tan(x + y) - x)`.
APPEARS IN
RELATED QUESTIONS
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
फलन f(x) = |x| + |x – 1|
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।
x = a पर f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "यदि" x ≠ 0),(0",", "यदि" x = "a"):}`
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
`8^x/x^8`
sinn (ax2 + bx + c)
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
[–1, 1] में f(x) = log(x2 + 2) – log3
[0, π] में f(x) = sinx – sin2x
वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`