Advertisements
Advertisements
Question
[0, π] में f(x) = sinx – sin2x
Solution
हमारे पास, [0, π] में f(x) = sinx – sin2x
हम जानते हैं कि सभी त्रिकोणमितीय फलन संतत और अवकलनीय होते हैं, उनका प्रांत, दिया गया फलन भी संतत और अवकलनीय होता है।
अतः माध्य मान प्रमेय की स्थिति संतुष्ट होती है।
इसलिए, कम से कम एक c ∈ (0, π) मौजूद है जैसे कि,
f'(c) = `("f"(pi) - "f"(0))/(pi - 0)`
⇒ cos c – 2 cos 2c = `(sin pi - sin 2pi - sin 0 + sin 0)/(pi - 0)`
⇒ 2 cos 2c – cos c = 0
⇒ 2(2 cos2c – 1) – cos c = 0
⇒ 4cos2c – cos c – 2 = 0
⇒ cos c = `(1 +- sqrt(1 + 32))/8`
= `(1 +- sqrt(33))/8`
⇒ c = `cos^-1 ((1 +- sqrt(33))/8) ∈ (0, π)`
इसलिए, माध्य मान प्रमेय सत्यापित किया गया है।
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि" x ≠ 2),(5",", "यदिf" x = 2):}`
x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि" x ≠ 4),(0",", "यदि" x = 4):}`
a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "यदि" x < 4),("a" + "b"",", "यदि" x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि" x > 4):}`
बिंदु x = 4 पर संतत है।
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`sin^-1 1/sqrt(x + 1)`
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` बिंदु x = 1 पर अवकलनीय हो।
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।
x3 के सापेक्ष x2 अवकलज ______ है।
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।