English

X = 2 पर (x) = ,यदि,यदिf{2x2-3x-2x-2,यदि x≠25,यदिf x=2 - Mathematics (गणित)

Advertisements
Advertisements

Question

x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि"  x ≠ 2),(5",", "यदिf"  x = 2):}` 

Sum

Solution

हमारे पास है, f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदिf"  x ≠ 2),(5",", "यदि"  x = 2):}` x = 2 पर

x = 2 पर

L.H.L. = `lim_(x -> 2^-) (2x^2 - 3x - 2)/(x - 2)`

= `lim_("h" -> 0) (2(2 - "h")^2 - 3(2 - "h") - 2)/((2 - "h") - 2)`

= `lim_("h" -> 0) (8 + 2"h"^2 - 8"h" - 6 + 3"h" - 2)/(-"h")`

= `lim_("h" -> 0) (2"h"^2 - 5"h")/(-"h")`

= `lim_("h" -> 0) ("h"(2"h" - 5))/(-"h")` = 5

R.H.L. = `lim_(x -> 2^+) (2x^2 - 3x - 2)/(x - 2)`

= `lim_("h" -> 0) (2(2 + "h")^2 - 3(2 + "h") - 2)/((2 + "h") - 2)`

= `lim_("h" -> 0) (8 + 2"h"^2 + 8"h" - 6 - 3"h" - 2)/"h"`

= `lim_("h" -> 0) (2"h"^2 + 5"h")/"h"`

= `lim_("h" -> 0) ("h"(2"h" + 5))/"h"` = 5

साथ ही f(2) = 5  ....(दिया है)

∴ L.H.L. = R.H.L. = f(2)

अतः f(x) x = 2 पर संतत है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - प्रश्नावली [Page 105]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 4 | Page 105

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि"  x ≠ 0),(0",",  "यदि"  x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु  x = 0 पर असंतत है।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


k का वह मान, जो f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,


 फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

x के सापेक्ष log10 का अवकलज ______ है।


y = |x – 1| एक संतत फलन है।


एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।


x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि"  x ≠ 0),(5",", "यदि"  x = 0):}` 


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


x = 5 पर f(x) = `{{:(3x - 8",",  "यदि"  x ≤ 5),(2"k"",",  "यदि"  x > 5):}` 


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`  से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।


`cos(tan sqrt(x + 1))`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।


tan–1(x2 + y2) = a


(x2 + y2)2 = xy


[0, 1] में f(x) = x(x – 1)2


बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।


यदि f(x) = `x^2 sin  1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×