Advertisements
Advertisements
Question
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
Solution
माना, y = `cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`
अब, `1 + sin x = sin^2 x/2 + cos^2 x/2 + 2 sin x/2 cos x/2`
`= (cos x/2 + sin x/2)`
`therefore sqrt(1 + sin x) = cos x/2 + sin x/2`
इसी प्रकार,
`sqrt(1 + sin x) = cos x/2 + sin x/2`
y = `cot^-1 [((cos x/2 + sin x/2) + (cos x/2 - sin x/2))/((cos x/2 + sin x/2) - (cos x/2 + sin x/2))]`
`= cot^-1 [(cos x/2 + sin x/2 + cos x/2 - sin x/2)/(cos x/2 + sin x/2 - cos x/2 + sin x/2)]`
`= cot^-1 [(2 cos x/2)/(2 sin x/2)]`
`= cot^-1 (cot x/2)`
y = `x/2`
x के सापेक्ष अवकलन करने पर,
`dy/dx = 1/2 * d/dx (x) = 1/2`
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",", "यदि" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि" x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?
`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "यदि" 0 ≤ x ≤ 1):}`
फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।
`2^(cos^(2_x)`
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
[0, 1] में f(x) = x(x – 1)2
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
[1, 4] में f(x) = `1/(4x - 1)`
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
फलन f(x) = `"e"^|x|`
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।