English

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए- cot-1[1+sinx+1-sinx1+sinx-1-sinx], 0 < x < π2 - Mathematics (गणित)

Advertisements
Advertisements

Question

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`

Sum

Solution

माना, y = `cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`

अब, `1 + sin x = sin^2  x/2  + cos^2  x/2 + 2 sin  x/2 cos  x/2`

`= (cos  x/2 + sin  x/2)`

`therefore sqrt(1 + sin x) = cos  x/2 + sin  x/2`

इसी प्रकार,

`sqrt(1 + sin x) = cos  x/2 + sin  x/2`

y = `cot^-1 [((cos  x/2 + sin  x/2) + (cos  x/2 - sin  x/2))/((cos  x/2 + sin  x/2) - (cos  x/2 + sin  x/2))]`

`= cot^-1  [(cos  x/2 + sin  x/2 + cos  x/2 - sin  x/2)/(cos  x/2 + sin  x/2 - cos  x/2 + sin  x/2)]`

`= cot^-1  [(2 cos  x/2)/(2  sin  x/2)]`

`= cot^-1  (cot  x/2)`

y = `x/2`

x के सापेक्ष अवकलन करने पर,

`dy/dx = 1/2 * d/dx (x) = 1/2`

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य तथा अवकलनीयता - अध्याय 5 पर विविध प्रश्नावली [Page 207]

APPEARS IN

NCERT Mathematics - Part 1 and 2 [Hindi] Class 12
Chapter 5 सांतत्य तथा अवकलनीयता
अध्याय 5 पर विविध प्रश्नावली | Q 6. | Page 207

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(3x2 – 9x + 5)9


यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।


अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।


मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",",  "यदि"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि"  x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


 फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है


यदि f(x) = `{{:("a"x + 1,"if"  x ≥ 1),(x + 2,"if"  x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "यदि"  0 ≤ x ≤ 1):}` 


फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।


`2^(cos^(2_x)`


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


tan–1(x2 + y2) = a


(x2 + y2)2 = xy


[0, 1] में f(x) = x(x – 1)2


`[0, pi/2]` esa f(x) = `sin^4x + cos^4x` 


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


[1, 4] में f(x) = `1/(4x - 1)`


फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।


फलन f(x) = `"e"^|x|` 


यदि f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो


 यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।


फलन  f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×