Advertisements
Advertisements
Question
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`
Solution
माना, y = `(cos^-1 x/2)/(sqrt(2x + 7)) = u/v`
`therefore u = cos^-1 x/2, v = sqrt(2x + 7)`
अब u = `cos^-1 x/2`
x के सापेक्ष अवकलन करने पर,
`(du)/dx = d/dx cos^-1 x/2`
`= - 1/(sqrt(1 - x^2/4)) d/dx (x/2)`
`= - 2/(sqrt(4 - x^2)) * 1/2`
`= (-1)/sqrt(4 - x^2)` ...(1)
तथा v = `sqrt(2x + 7)`
x के सापेक्ष अवकलन करने पर,
`(dv)/dx = 1/2 (2x - 7)^(1/2 - 1) d/dx (2x - 7)`
`= 1/2 (2x - 7)^(- 1//2) (2) = 1/(sqrt(2x + 7))` ...(2)
y = `u/v`
∴ `dy/dx = (v (du)/dx - u (dv)/dx)/v^2` ... [(1) तथा (2) से का मान रखने पर]
`= (- 1/(sqrt(4 - x^2)) xx sqrt(2x + 7) - (cos^-1 x/2)/sqrt(2x + 7))/((2x + 7))`
`= - [1/(sqrt(4 - x^2) sqrt(2x + 7)) + (cos^-1 x/2)/(2x + 7)^(3//2)]`
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(log x)log x, x > 1
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
यदि फलन f(x) = `{{:(sinx/x + cosx",", "यदि" x ≠ 0),("k"",", "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
x के सापेक्ष log10 का अवकलज ______ है।
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
(sin x)cosx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
sec(x + y) = xy
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0
फलन f(x) = `(4 - x^2)/(4x - x^3)`
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।