Advertisements
Advertisements
Question
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
Solution
हमारे पास है, x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 0 पर
L.H.L. = `lim_(x -> 0^-) ("e"^(1/x))/(1 + "e"^(1/x))`
= `lim_("h" -> 0) ("e"^(1/(0 - "h")))/(1 + "e"^(1/(0 - "h"))`
= `lim_("h" -> 0) ("e"^(1/"h"))/(1 + "e"^(- 1/"h"))`
= `("e"^(- oo))/(1 + "e"^(- oo))`
= `0/(1 + 0)`
= 0
R.H.L. = `lim_(x -> 0^+) ("e"^(1/x))/(1 + "e"^(1/x))`
= `lim_("h" -> 0) ("e"^(1/(0 + "h")))/(1 + "e"^(1/(0 + "h"))`
= `lim_("h" -> 0) ("e"^(1/"h"))/(1 + "e"^(1/"h"))`
= `lim_("h" -> 0) 1/("e"^(-1/"h") + 1)`
= `1/("e"^(-oo) + 1)`
= `1/(0 + 1)`
= 1
इस प्रकार, L.H.L. ≠ R.H.L. x = 0 पर
अतः f(x) x = 0 पर असंतत है।
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
यदि फलन f(x) = `{{:(sinx/x + cosx",", "यदि" x ≠ 0),("k"",", "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
x = 1 पर f(x) = |x| + |x − 1|
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
`sin sqrt(x) + cos^2 sqrt(x)`
sinn (ax2 + bx + c)
`sin^-1 1/sqrt(x + 1)`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
[1, 4] में f(x) = `1/(4x - 1)`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
मान लीजिए f(x) = |sin x| है, तब
दो संतत फलनों का संयोजन एक संतत फलन होता है।