Advertisements
Advertisements
Question
[1, 4] में f(x) = `1/(4x - 1)`
Solution
हमारे पास, [1, 4] में f(x) = `1/(4x - 1)` है।
स्पष्ट रूप से f(x) [1, 4] में संतत है।
साथ ही, f'(x) = `-4/(4x - 1)^2`, जो में मौजूद है (1, 4)
अतः यह (1, 4) में अवकलनीय है।
इस प्रकार माध्य मान प्रमेय की शर्तें संतुष्ट होती हैं।
इसलिए, एक वास्तविक संख्या c ∈ (1, 4) मौजूद है जैसे कि
f'(c) = `("f"(4) - f(1))/(4 - 1)`
⇒ `(-4)/(4"c" - 1)^2 = (1/(16 - 1) - 1/(4 - 1))/(4 - 1)`
= `(1/15 - 1/3)/3`
⇒ `(-4)/(4"" - 1)^2 = (-4)/45`
⇒ `(4"c" - 1)^2` = 45
⇒ 4c – 1 = `+- 3 sqrt(5)`
⇒ c = `(3sqrt(5) + 1)/4 ∈ (1, 4)`
इसलिए माध्य मान प्रमेय की पुष्टि हो चुकी है।
APPEARS IN
RELATED QUESTIONS
यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
यदि फलन f(x) = `{{:(sinx/x + cosx",", "यदि" x ≠ 0),("k"",", "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
k का वह मान, जो f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,
एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "यदि" x < 4),("a" + "b"",", "यदि" x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि" x > 4):}`
बिंदु x = 4 पर संतत है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
(x2 + y2)2 = xy
[0, π] में f(x) = sinx – sin2x
वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
फलन f(x) = `(4 - x^2)/(4x - x^3)`
यदि f(x) = `x^2 sin 1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।
मान लीजिए f(x) = |sin x| है, तब
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।
त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।