Advertisements
Advertisements
Question
फलन f(x) = `(4 - x^2)/(4x - x^3)`
Options
केवल एक बिंदु पर असंतत है।
ठीक दो बिंदुओं पर असंतत है।
ठीक तीन बिंदुओं पर असंतत है।
इनमें से कोई नहीं।
Solution
सही उत्तर ठीक तीन बिंदुओं पर असंतत है।
व्याख्या:
यह देखते हुए: f(x) = `(4 - x^2)/(4x - x^3)`
असंतुलित फलन के लिए
4x – x3 = 0
⇒ x(4 – x2) = 0
⇒ x(2 – x)(2 + x) = 0
⇒ x = 0, x = – 2, x = 2
इसलिए, दिया गया फलन तीन बिंदुओं पर बिल्कुल बंद है।
APPEARS IN
RELATED QUESTIONS
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`
फलन f(x) = |x| + |x – 1|
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
`8^x/x^8`
`cos(tan sqrt(x + 1))`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
[–1, 1] में f(x) = log(x2 + 2) – log3
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
[0, π] में f(x) = sinx – sin2x
वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______