English

यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = π4 पर;dydxba(dydx)=ba - Mathematics (गणित)

Advertisements
Advertisements

Question

 यदि x = asin2t (1 + cos2t)  और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`

Sum

Solution

दिया गया है: x = asin2t (1 + cos 2t) और y = bcos2t (1 – cos 2t).

दोनों प्राचलिक फलनों को अलग करना w.r.t. t

`"dx"/"dt" = "a"[sin2"t" * "d"/"dt" (1 + cos 2"t") + (1 + cos 2"t") * "d"/"dt" sin 2"t"]`

= a[sin 2t .(– sin 2t) + (1 + cos 2t)(cos 2t).2]

= a[2(cos22t – sin22t + 2 cos 2t]

= a[2 cos22t – sin22t) + 2 cos 2t]

= a[2 cos 4t + 2 cos 2t]  ....[∵ cos 2x = cos2x – sin2x]

= 2a[cos 4t + cos 2t]

y = b cos 2t (1 – cos 2t)

`"dy"/"dx" = "b"[cos 2"t" * "d"/"dt" (1 - cos 2"t") + (1 - cos 2"t") * "d"/"dt" (cos 2"t")]`

= b[cos 2t . sin 2t.2 + (1 – cos 2t).(– son 2t).2

= b[sin 4t – 2 sin 2t - 2 sin 2t + 2 sin 2t cos 2t]

= b[2 sin 4t – 2 sin 2t]

= 2b (sin 4t – sin 2t)

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(2"b"[sin 4"t" - sin2"t"])/(2"a"[cos 4"t" + cos 2"t"])`

= `"b"/"a" [(sin 4"t" - sin 2"t")/(cos 4"t" + cos 2"t")]`

t = `pi/4` रखिये

∴ x = `pi/4` पर;`("dy"/"dx") = "b"/"a" [(sin 4(pi/4) - sin 2* (pi/4))/(cos 4(pi/4) + cos 2*(pi/4))]`

= `"b"/"a" [(sin pi - sin  pi/2)/(cos pi + cos  pi/2)]`

= `"b"/"a" [(0 - 1)/(-1 + 0)]`

= `"b"/"a"((-1)/(-1))`

= `"b"/'a"`

इसलिए, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - प्रश्नावली [Page 108]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 50 | Page 108

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।


यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।


मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx  द्वारा दिया जाने वाला फलन अवकलनीय है,


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


y = |x – 1| एक संतत फलन है।


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


x = 0 पर f(x) = `{{:(|x|cos  1/x",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


x = 1 पर f(x) = |x| + |x − 1|


x = 2 पर, f(x) = `{{:(1 + x",",  "यदि"  x ≤ 2),(5 - x",",  "यदि"  x > 2):}` 


दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।


`8^x/x^8`


(x + 1)2(x + 2)3(x + 3)4


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।


फलन f(x) = `"e"^|x|` 


फलन  f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।


यदि f.g  बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×