Advertisements
Advertisements
Question
x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "यदि" 0 ≤ x ≤ 1):}`
Solution
हमारे पास f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "यदि" 0 ≤ x ≤ 1):}`
L.H.L. = `lim_(x -> 0^-) (sqrt(1 + "k"x) - sqrt(1 - "k"x))/x`
= `lim_(x -> 0^-) ((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x) * ((sqrt(1 + "k"x) + sqrt(1 - "k"x))/(sqrt(1 + "k"x) + sqrt(1 - "k"x)))`
= `lim_(x -> 0^-) (1 + "k"x - 1 + "k"x)/(x[sqrt(1 + "k"x) + sqrt(1 + "k"x)])`
= `lim_("h" -> 0) (2"k")/(x[sqrt(1 + "k"(0 - "h")) + sqrt(1 - "k"(0 - "h")]`
= `lim_("h" -> 0) (2"k")/(sqrt(1 - "kh") + sqrt(1 + "kh")`
= `(2"k")/2`
= k
R.H.L. = `lim_(x -> 0^+) (2x + 1)/(x - 1)`
= `lim_("h" -> 0) (2(0 + "h") + 1)/((0 + "h") - 1)`
= `lim_("h" -> 0) (2"h" + 1)/("h" - 1)`
= – 1
साथ ही f(0) = `(2 xx 0 + 1)/(0 - 1)` = – 1
हमारे पास L.H.L. = R.H.L. = f(0) होना चाहिए।
⇒ k = – 1
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
x के सापेक्ष log10 का अवकलज ______ है।
यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ t = `1/(x - 1)` है।
`2^(cos^(2_x)`
`sin sqrt(x) + cos^2 sqrt(x)`
`cos(tan sqrt(x + 1))`
sinx2 + sin2x + sin2(x2)
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
[0, 1] में f(x) = x3 – 2x2 – x + 3
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
फलन f(x) = `"e"^|x|`
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।