Advertisements
Advertisements
Question
यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
Solution
दिया है कि y = `(cos x)^((cos x)^((cosx)....oo)`,
⇒ y = (cos x)y .....`[y = (cos x)^((cos x)^((cosx)....oo))]`
दोनों पक्षों पर log लेते हुए log y = y.log(cos x)
दोनों पक्षों में अंतर करना w.r.t. x
`1/y * "dy"/"dx" = y * "d"/"dx" log (cos x ) + log(cos x) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" = y * 1/cosx * "d"/"dx" (cos x) + log(cos x) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" = y* 1/cosx * (- sin x) + log(cosx) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" - log(cos x) "dy"/"dx"` = – y tan x
⇒ `[1/y - log (cosx)] "dy"/"dx"` = – y tan x
⇒ `"dy"/"dx" = (- y tanx)/(1/y - log(cosx))`
= `(y^2 tanx)/(y log cos x - 1)`
इसलिए, `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`.
इसलिए साबित हुआ।
APPEARS IN
RELATED QUESTIONS
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।
यदि फलन f(x) = `{{:(sinx/x + cosx",", "यदि" x ≠ 0),("k"",", "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
मान लीजिए कि f(x)= |cosx| है।जब,
k का वह मान, जो f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
y = |x – 1| एक संतत फलन है।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x = 0 पर f(x) = `{{:(|x|cos 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = a पर f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "यदि" x ≠ 0),(0",", "यदि" x = "a"):}`
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
sinn (ax2 + bx + c)
sinx2 + sin2x + sin2(x2)
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
यदि f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?
फलन f(x) = `(4 - x^2)/(4x - x^3)`
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।