English

मान लीजिए कि f(x)= |cosx| है।जब, - Mathematics (गणित)

Advertisements
Advertisements

Question

मान लीजिए कि f(x)= |cosx| है।जब,

Options

  • f प्रत्येक स्थान पर अवकलनीय है।

  • f प्रत्येक स्थान पर संतत है, परंतु n = nπ, n ∈ Z पर अवकलनीय नहीं है।

  • f प्रत्येक स्थान पर संतत है, परंतु x = `(2"n" + 1) pi/2, "n" ∈ "Z"` पर अवकलनीय नहीं है।

  • इनमें से कोई नहीं

MCQ

Solution

सही उत्तर f प्रत्येक स्थान पर संतत है, परंतु x = `underline((2"n" + 1) pi/2, "n" ∈ "Z")` पर अवकलनीय नहीं है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - हल उदाहरण [Page 101]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
हल उदाहरण | Q 28 | Page 101

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।


यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।


k का वह मान, जो f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,


उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx  द्वारा दिया जाने वाला फलन अवकलनीय है,


यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है 


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


यदि f(x) = `{{:("a"x + 1,"if"  x ≥ 1),(x + 2,"if"  x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।


cos |x| प्रत्येक स्थान पर अवकलनीय है।


 x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}` 


x = 5 पर f(x) = `{{:(3x - 8",",  "यदि"  x ≤ 5),(2"k"",",  "यदि"  x > 5):}` 


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


दर्शाइए कि फलन  f(x) = |sin x + cos x| बिंदु x = π पर संतत है।


sinmx . cosnx


(x + 1)2(x + 2)3(x + 3)4


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


 यदि x = asin2t (1 + cos2t)  और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


[1, 4] में f(x) = `1/(4x - 1)`


p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",",  "यदि"  x ≤ 1),("q"x + 2",",  "यदि"  x > 1):}` बिंदु x = 1 पर अवकलनीय हो।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0


 यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×