Advertisements
Advertisements
प्रश्न
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
पर्याय
R
`"R" - {1/2}`
`(0, oo)`
इनमें से कोई नहीं।
उत्तर
सही उत्तर `underline("R" - {1/2})` है।
व्याख्या:
यह देखते हुए कि: f(x) = |2x − 1| sinx
स्पष्ट रूप से, f(x) x = `1/2` पर भिन्न नहीं है।
R.H.L. = `"f'"(1/2) = lim_("h" -> 0) ("f"(1/2 + "h") - "f"(1/2))/"h"`
= `lim_("h" -> 0) (|2(1/2 + "h") - 1|sin(1/2 + "h") - 0)/"h"`
= `lim_("h" -> 0) (|2"h"| sin((1 + 2"h")/2))/"h"`
= `2 sin (1/2)`
इसके अलावा L.H.L. = `"f'"(1/2) = lim_("h" -> 0) ("f"(1/2 - "h") - "f"(1/2))/(-"h")`
= `lim_("h" -> 0) (|2(1/2 - "h") - 1|[- sin (1/2 - "h")] - 0)/(-"h")`
= `(|-2"h"|[-sin(1/2 - "h")])/(-"h")`
= `- 2 sin (1/2)`
∴ R.H.L. = `"f'"(1/2)` ≠ L.H.L. `"f'"(1/2)`
तो, दिया गया फलन f(x) x = `1/2` पर भिन्न नहीं है।
∴ f(x) में भिन्न है `"R" - {1/2}`
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।
x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि" x ≠ 4),(0",", "यदि" x = 4):}`
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "यदि" x < 4),("a" + "b"",", "यदि" x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि" x > 4):}`
बिंदु x = 4 पर संतत है।
फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ t = `1/(x - 1)` है।
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
`8^x/x^8`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
sec(x + y) = xy
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
[–1, 1] में f(x) = log(x2 + 2) – log3
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
यदि f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।