Advertisements
Advertisements
प्रश्न
मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",", "यदि" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि" x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?
उत्तर
यहाँ f(0) = a है तथा 0 पर f की वाम सीमा है:
`lim_(x -> 0^-) "f"(x) = lim_(x -> 0^-) (1 - cos 4x)/x^2`
= `lim_(x -> 0^-) (2sin^2 2x)/x^2`
= `lim_(2x -> 0^-) 8((sin 2x)/2x)^2`
= 8(1)2
= 8.
तथा 0 पर f की दक्षिण सीमा है:
`lim_(x -> 0^+) "f"(x) = lim_(x -> 0^+) sqrt(x)/(sqrt(16 + sqrt(x)) - 4)`
= `lim_(x - 0^+) (sqrt(x)(sqrt(16 + sqrt(x)) + 4))/((sqrt(16 + sqrt(x)) + 4)(sqrt(16 + sqrt(x)) - 4))`
= `lim+_(x -> 0^+) (sqrt(x)(sqrt(16 + sqrt(x)) + 4))/(16 + sqrt(x) 16)`
= `lim_(x -. 0^+) (sqrt(16 + sqrt(x)) + 4)`
= 8
इस प्रकार, `lim_(x -> 0+) "f"(x) = lim_(x -> 0^+) "f(x)` = 8 है।
अत:, x = 0 पर f केवल तभी संतत होगा जब a = 8 हो।
APPEARS IN
संबंधित प्रश्न
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।
[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।
k का वह मान, जो f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
`2^(cos^(2_x)`
`8^x/x^8`
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
[–1, 1] में f(x) = log(x2 + 2) – log3
[1, 4] में f(x) = `1/(4x - 1)`
[1, 5] में f(x) = `sqrt(25 - x^2)`
फलन f(x) = `(4 - x^2)/(4x - x^3)`
फलन f(x) = `"e"^|x|`
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।
एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।
दो संतत फलनों का संयोजन एक संतत फलन होता है।