Advertisements
Advertisements
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
12 ...... A
Concept: undefined > undefined
Answer the following:
If sinθ = `(x^2 - y^2)/(x^2 + y^2)` then find the values of cosθ, tanθ in terms of x and y.
Concept: undefined > undefined
Advertisements
Prove the following:
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)`
Concept: undefined > undefined
Prove the following:
`((1 + tan x)/(1 - tan x))^2 = tan(pi/4 + x)/(tan(pi/4 - x))`
Concept: undefined > undefined
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Concept: undefined > undefined
Prove the following:
`sqrt(2)cos (pi/4 - "A")` = cos A + sin A
Concept: undefined > undefined
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
Concept: undefined > undefined
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
Concept: undefined > undefined
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
Concept: undefined > undefined
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
Concept: undefined > undefined
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find tan (A + B)
Concept: undefined > undefined
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Concept: undefined > undefined
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Concept: undefined > undefined
Select the correct option from the given alternatives :
If tan A – tan B = x and cot B – cot A = y, then cot (A – B) = _____
Concept: undefined > undefined
Select the correct option from the given alternatives:
The value of `costheta/(1 + sin theta)` is equal to .....
Concept: undefined > undefined
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Concept: undefined > undefined
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Concept: undefined > undefined
Prove the following:
`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)
Concept: undefined > undefined
Prove the following:
tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A
Concept: undefined > undefined
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
Concept: undefined > undefined