मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A ball of mass 50 g moving at a speed of 2.0 m/s strikes a plane surface at an angle of incidence 45°. The ball is reflected by the plane at equal angle of reflection with the same speed - Physics

Advertisements
Advertisements

प्रश्न

A ball of mass 50 g moving at a speed of 2.0 m/s strikes a plane surface at an angle of incidence 45°. The ball is reflected by the plane at equal angle of reflection with the same speed. Calculate (a) the magnitude of the change in momentum of the ball (b) the change in the magnitude of the momentum of the ball.

बेरीज

उत्तर

It is given that:
Mass of the ball = 50 g =
\[0 . 05 \text{ Kg}\] 
Speed of the ball, v = 2.0 m/s
Incident angle = 45˚

\[v = 2 \cos 45^\circ \hat i - 2 \sin 45^\circ \hat j \]
\[v' = - 2 \cos 45^\circ \hat i - 2 \sin 45^\circ \hat j\]
\[(a) \text{ Change in momentum } = m \vec{v} - m \vec{v} '\]
\[ = 0 . 05\left( 2 \cos 45^\circ\ \hat i - 2 \sin 45^\circ \hat j \right) - 0 . 05\left( - 2 \cos 45^\circ \hat i - 2 \sin 45^\circ \hat j \right)\]
\[ = 0 . 1 \cos 45^\circ\ \hat i - 0 . 1 \sin 45^\circ \ \hat j + 0 . 1 \cos 45^\circ \ \hat i + 0 . 1 \sin 45^\circ\ \hat j\]
\[ = 0 . 2 \cos 45^\circ\ \hat i \]
\[ \therefore \text{ Magnitude }= \frac{0 . 2}{\sqrt{2}} = 0 . 14 \text{ Kg m/s}\]

(b) The change in magnitude of the momentum of the ball,

\[\left| \vec{P}_2 \right| - \left| \vec{P}_1 \right| = 2 \times 0 . 5 - 2 \times 0 . 5 = 0\]
i.e. There is no change in magnitude of the momentum of the ball. 

shaalaa.com
Momentum Conservation and Centre of Mass Motion
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Centre of Mass, Linear Momentum, Collision - Exercise [पृष्ठ १६१]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 9 Centre of Mass, Linear Momentum, Collision
Exercise | Q 20 | पृष्ठ १६१

संबंधित प्रश्‍न

A bob suspended from the ceiling of a car which is accelerating on a horizontal road. The bob stays at rest with respect to the car with the string making an angle θ with the vertical. The linear momentum of the bob as seen from the road is increasing with time. Is it a violation of conservation of linear momentum? If not, where is the external force changes the linear momentum?


Two bodies make an elastic head-on collision on a smooth horizontal table kept in a car. Do you expect a change in the result if the car is accelerated in a horizontal road because of the non inertial character of the frame? Does the equation "Velocity of separation = Velocity of approach" remain valid in an accelerating car? Does the equation "final momentum = initial momentum" remain valid in the accelerating car?


A nucleus moving with a velocity \[\vec{v}\] emits an α-particle. Let the velocities of the α-particle and the remaining nucleus be v1 and v2 and their masses be m1 and m2


In an elastic collision
(a) the kinetic energy remains constant
(b) the linear momentum remains constant
(c) the final kinetic energy is equal to the initial kinetic energy
(d) the final linear momentum is equal to the initial linear momentum.


A uranium-238 nucleus, initially at rest, emits an alpha particle with a speed of 1.4 × 107m/s. Calculate the recoil speed of the residual nucleus thorium-234. Assume that the mass of a nucleus is proportional to the mass number.


A man of mass 50 kg starts moving on the earth and acquires a speed 1.8 m/s. With what speed does the earth recoil? Mass of earth = 6 × 1024 kg.


A man of mass M having a bag of mass m slips from the roof of a tall building of height H and starts falling vertically in the following figure. When at a height h from the ground, the notices that the ground below him is pretty hard, but there is a pond at a horizontal  distance x from the line of fall. In order to save himself he throws the bag horizontally (with respect to himself) in the direction opposite to the pond. Calculate the minimum horizontal velocity imparted to the bag so that the man lands in the water. If the man just succeeds to avoid the hard ground, where will the bag land?


A gun is mounted on a railroad car. The mass of the car, the gun, the shells and the operator is  50 m where m is the mass of one shell. If the velocity of the shell with respect to the gun (in its state before firing) is 200 m/s, what is the recoil speed of the car after the second shot? Neglect friction.


A ball of mass m moving at a speed v makes a head-on collision with an identical ball at rest. The kinetic energy of the balls after the collision is three fourths of the original. Find the coefficient of restitution.  


In a gamma decay process, the internal energy of a nucleus of mass M decreases, a gamma photon of energy E and linear momentum E/c is emitted and the nucleus recoils. Find the decrease in internal energy. 


A block of mass 2.0 kg is moving on a frictionless horizontal surface with a velocity of 1.0 m/s (In the following figure) towards another block of equal mass kept at rest. The spring constant of the spring fixed at one end is 100 N/m. Find the maximum compression of the spring.


A bullet of mass 20 g travelling horizontally with a speed of 500 m/s passes through a wooden block of mass 10.0 kg initially at rest on a level surface. The bullet emerges with a speed of 100 m/s and the block slides 20 cm on the surface before coming to rest. Find the friction coefficient between the block and the  surface (See figure).


Two mass m1 and m2 are connected by a spring of spring constant k and are placed on a frictionless horizontal surface. Initially the spring is stretched through a distance x0 when the system is released from rest. Find the distance moved by the two masses before they again come to rest. 


A bullet of mass 10 g moving horizontally at a speed of 50√7 m/s strikes a block of mass 490 g kept on a frictionless track as shown in figure. The bullet remains inside the block and the system proceeds towards the semicircular track of radius 0.2 m. Where will the block strike the horizontal part after leaving the semicircular track?


The friction coefficient between the horizontal surface and each of the block shown in figure is 0.20. The collision between the blocks is perfectly elastic. Find the separation between the two blocks when they come to rest. Take g = 10 m/s2.


A small block of superdense material has a mass of 3 × 1024kg. It is situated at a height h (much smaller than the earth's radius) from where it falls on the earth's surface. Find its speed when its height from the earth's surface has reduce to to h/2. The mass of the earth is 6 × 1024kg.


A metre stick is held vertically with one end on a rough horizontal floor. It is gently allowed to fall on the floor. Assuming that the end at the floor does not slip, find the angular speed of the rod when it hits the floor.


A uniform rod pivoted at its upper end hangs vertically. It is displaced through an angle of 60° and then released. Find the magnitude of the force acting on a particle of mass dm at the tip of the rod when the rod makes an angle of 37° with the vertical.


A thin spherical shell of radius R lying on a rough horizontal surface is hit sharply and horizontally by a cue. Where should it be hit so that the shell does not slip on the surface?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×