मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Charge Q is Placed at the Centre of an Uncharged, Hollow Metallic Sphere of Radius A. (A) Find the Surface. - Physics

Advertisements
Advertisements

प्रश्न

A charge Q is placed at the centre of an uncharged, hollow metallic sphere of radius a. (a) Find the surface. (b) If a charge q is put on the sphere, what would be the surface charge densities on the inner and outer surfaces? (c) Find the electric field inside the sphere at a distance x from the centre in the situations (a) and (b).

थोडक्यात उत्तर

उत्तर

Given:
Amount of charge present at the centre of the hollow sphere = Q
We know that charge given to a hollow sphere will move to its surface.
Due to induction, the charge induced at the inner surface = −Q
Thus, the charge induced on the outer surface = +Q
(a)
Surface charge density is the charge per unit area, i.e.

`sigma = ("charge")/ "total surface area" `

Surface charge density of the inner surface, 

`sigma_"in" = -"Q"/(4 pi "a"^2)`

Surface charge density of the outer surface, 

`sigma _"out" = "Q"/(4 pi "a"^2) `

(b)
Now if another charge q is added to the outer surface, all the charge on the metal surface will move to the outer surface. Thus, it will not affect the charge induced on the inner surface. Hence the inner surface charge density,

`sigma _"in" = -"q" / (4 pi "a"^2)`

As the charge has been added to the outer surface, the total charge on the outer surface will become (Q+q).
So the outer surface charge density, 

`sigma _"out" =  ("q"+ "Q")/(4 pi "a"^2) `

(c)
To find the electric field inside the sphere at a distance x from the centre in both the situations,let us assume an imaginary sphere inside the hollow sphere at a distance x from the centre.
Applying Gauss's Law on the surface of this imaginary sphere,we get:

`oint  "E" ."d""s" = "Q"/∈_0`

`"E" oint  "d""s" = "Q"/∈_0`

`"E" ( 4 pi "x"^2) = "Q"/∈_0`

`"E" = "Q"/∈_0 xx 1/ (4 pi "x"^2) = "Q"/( 4 pi ∈_0 "x"^2)`

Here, Q is the charge enclosed by the sphere.
For situation (b):
As the point is inside the sphere, there is no effect of the charge q given to the shell.
Thus, the electric field at the distance x:

`"E"  = "Q" / 4 pi ∈_0 "x"^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Gauss’s Law - Exercises [पृष्ठ १४२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 8 Gauss’s Law
Exercises | Q 12 | पृष्ठ १४२

संबंधित प्रश्‍न

(i) If two similar large plates, each of area A having surface charge densities +σ and –σ are separated by a distance d in air, find the expressions for

(a) field at points between the two plates and on outer side of the plates. Specify the direction of the field in each case.

(b) the potential difference between the plates.

(c) the capacitance of the capacitor so formed.

(ii) Two metallic spheres of Radii R and 2R are charged so that both of these have same surface charge density σ. If they are connected to each other with a conducting wire, inn which direction will the charge flow and why?


In the following figure shows a charge q placed at the centre of a hemisphere. A second charge Q is placed at one of the positions A, B, C and D. In which position(s) of this second charge, the flux of the electric field through the hemisphere remains unchanged?
(a) A
(b) B
(c) C
(d) D


A closed surface S is constructed around a conducting wire connected to a battery and a switch in the following figure. As the switch is closed, the free electrons in the wire start moving along the wire. In any time interval, the number of electrons entering the closed surface S is equal to the number of electrons leaving it. On closing the switch, the flux of the electric field through the closed surface
(a) is increased
(b) is decreased
(c) remains unchanged
(d) remains zero


The electric field in a region is given by 

`vec"E"= 3/5"E"_0 vec"i" + 4/5 "E"_0 vec "i"  "with" " E"_0 = 2.0 xx 10^3 "N""C"^-1.` 

 Find the flux of this field through a rectangular surface of area 0⋅2 m2 parallel to the y-z plane.


The electric field in a region is given by `vec"E" = ("E"_0 "x")/"l"  vec"i".` 

Find the charge contained inside the cubical volume bound by the surfaces 

x =0, x =a, y=0, y=a, z=0 and z=a. Take

`"E"_0 = 5 xx 10^3 "N""C"^-1 , "l" =2 "cm" " and" " a" = 1 "cm" `


The radius of a gold nucleus (Z = 79) is about 7.0 × 10-10 m. Assume that the positive charge is distributed uniformly throughout the nuclear volume. Find the strength of the electric field at (a) the surface of the nucleus and (b) at the middle point of a radius. Remembering that gold is a conductor, is it justified to assume that the positive charge is uniformly distributed over the entire volume of the nucleus and does not come to the outer surface?


Consider the following very rough model of a beryllium atom. The nucleus has four protons and four neutrons confined to a small volume of radius 10−15 m. The two 1 selectrons make a spherical charge cloud at an average distance of 1⋅3 ×10−11 m from the nucleus, whereas the two 2 s electrons make another spherical cloud at an average distance of 5⋅2 × 10−11 m from the nucleus. Find three electric fields at (a) a point just inside the 1 s cloud and (b) a point just inside the 2 s cloud.


Find the magnitude of the electric field at a point 4 cm away from a line charge of density 2 × 10-6 Cm-1.


A non-conducting sheet of large surface area and thickness d contains a uniform charge distribution of density ρ. Find the electric field at a point P inside the plate, at a distance x from the central plane. Draw a qualitative graph of E against x for 0 < x < d.


A charged particle with a charge of −2⋅0 × 10−6 C is placed close to a non-conducting plate with a surface charge density of 4.0 × 10-6Cm0-2. Find the force of attraction between the particle and the plate.


One end of a 10 cm long silk thread is fixed to a large vertical surface of a charged non-conducting plate and the other end is fastened to a small ball of mass 10 g and a charge of 4.0× 10-6 C. In equilibrium, the thread makes an angle of 60° with the vertical (a) Find the tension in the string in equilibrium. (b) Suppose the ball is slightly pushed aside and released. Find the time period of the small oscillations.


A block of mass containing a net positive charge q is placed on a smooth horizontal table which terminates in a vertical wall as shown in the figure. The distance of the block from the wall is d. A horizontal electric field E towards the right is switched on. Assuming elastic collisions (if any), find the time period of the resulting oscillatory motion. Is it a simple harmonic motion? 


Some equipotential surface is shown in the figure. What can you say about the magnitude and the direction of the electric field? 


An electric field of magnitude 1000 NC−1 is produced between two parallel plates with a separation of 2.0 cm, as shown in the figure. (a) What is the potential difference between the plates? (b) With what minimum speed should an electron be projected from the lower place in the direction of the field, so that it may reach the upper plate? (c) Suppose the electron is projected from the lower place with the speed calculated in part (b). The direction of projection makes an angle of 60° with the field. Find the maximum height reached by the electron.


Draw equipotential surfaces corresponding to a uniform electric field in the z-directions. 


If a linear isotropic dielectric is placed in an electric field of strength E, then the polarization P is ______.

A charge Q is applied to a conducting sphere of radius R. At the sphere's centre, the electric potential and electric field are respectively


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×