मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

A company produces mixers and food processors. Profit on selling one mixer and one food processor is Rs 2,000 and Rs 3,000 respectively. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A company produces mixers and food processors. Profit on selling one mixer and one food processor is Rs 2,000 and Rs 3,000 respectively. Both the products are processed through three machines A, B, C. The time required in hours for each product and total time available in hours per week on each machine arc as follows:

Machine  Mixer Food Processor Available time
A 3 3 36
B 5 2 50
C 2 6 60

How many mixers and food processors should be produced in order to maximize the profit?

आलेख
बेरीज

उत्तर

Let x = number of mixers are sold
      y = number of food processors are sold

Profit function z = 2000x + 3000y

This is the objective function which is to be maximized. From the given table in the problem, the constraints are

3x + 3y ≤ 36        (above machine A)
5x 2y ≤ 50           ( about machine B)
2x + 6y ≤ 60        ( about machine C)

As the number of mixers and food processors are non-negative.

x ≥ 0, y ≥ 0
Mathematical model of L.P.P. is
Maximize Z = 2000x + 3000y  Subject to 
3x + 3y ≤ 36, 5x 2y ≤ 50, 2x + 6y ≤ 60
and x ≥ 0, y ≥ 0

First we draw the lines AB, CD and EF whose equations are 3x + 3y = 36, 5x + 2y = 50 and 2x + 6y = 60 respectively.

Line Equation Points on the X-axis Points on the Y-axis Sign Region
AB 3x + 3y = 36 A(12,0) B(0,12) origin side of line AB
CD 5x + 2y = 50 C(10,0) D(0,25) origin side of line CD
EF 2x + 6y = 60 E(30,0) F(0,10) origin side of line EF

The feasible region is OCPQFO which is shaded in the graph.

The vertices of the feasible region are O (0, 0), C (10, 0), P, Q and F (0, 10).

P is the point of intersection of the lines

3x + 3y = 36      ....(1)

and 5x + 2y = 50     ....(2)

Multiplying equation (1) by 2 and equation (2) by 3, we get,

6x + 6y = 72

15x + 6y = 150

On subtracting, we get

9x = 78

∴ x = `26/3`

∴ from (1), `3(26/3) + 3"y" = 36`

∴ 3y = 10

∴ y = `10/3`

∴ P = `(26/3,10/3)`

Q is the point of intersection of the lines

3x + 3y = 36     . ...(1)

and 2x + 6y = 60     ...(2)

Multiplying equation (1) by 2, we get

6x + 6y = 72

Subtracting equation (3), from this equation, we get

4x = 12

∴ x = 3

∴ from (1), 3(3) + 3y = 36

∴ 3y = 27

∴ y = 9

∴ Q = (3, 9)

The values of the objective function z = 2000x  + 3000y at these vertices are

z(O) = 2000(0) + 3000(0) = 0 + 0 = 0

z(C) = 2000(10) + 3000(0) = 20000 + 0 = 20000

z(P) = `2000(26/3) + 3000(10/3) = 52000/3 + 30000/3 = 82000/3`

z(Q) = 2000(3) + 3000(9) = 6000 + 27000 = 33000

z(F) = 2000(0) + 3000(10) = 30000 + 0 = 30000

∴ the maximum value of z is 33000 at the point (3, 9).

Hence, 3 mixers and 9 food processors should be produced in order to get the maximum profit of ₹ 33,000.

shaalaa.com
Linear Programming Problem (L.P.P.)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Linear Programming - Miscellaneous exercise 7 [पृष्ठ २४४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 7 Linear Programming
Miscellaneous exercise 7 | Q 10) | पृष्ठ २४४

संबंधित प्रश्‍न

Which of the following statements is correct?


Find the feasible solution of the following inequation:

2x + 3y ≤ 6, x + y ≥ 2, x ≥ 0, y ≥ 0


Find the feasible solution of the following inequation:

x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9,  x ≥ 0, y ≥ 0.


In a cattle breading firm, it is prescribed that the food ration for one animal must contain 14. 22 and 1 units of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit of these two contains the following amounts of these three nutrients: 

Fodder → Fodder 1 Fodder 2
Nutrient ↓
Nutrients A 2 1
Nutrients B 2 3
Nutrients C 1 1

The cost of fodder 1 is ₹ 3 per unit and that of fodder 2 ₹ 2. Formulate the LPP to minimize the cost.


A manufacturer produces bulbs and tubes. Each of these must be processed through two machines M1 and M2. A package of bulbs requires 1 hour of work on Machine M1 and 3 hours of work on Machine M2. A package of tubes requires 2 hours on Machine M1 and 4 hours on Machine M2. He earns a profit of ₹ 13.5 per package of bulbs and ₹ 55 per package of tubes. Formulate the LPP to maximize the profit, if he operates the machine M1, for almost 10 hours a day and machine M2 for almost 12 hours a day.


A doctor has prescribed two different units of foods A and B to form a weekly diet for a sick person. The minimum requirements of fats, carbohydrates and proteins are 18, 28, 14 units respectively. One unit of food A has 4 units of fat, 14 units of carbohydrates and 8 units of protein. One unit of food B has 6 units of fat, 12 units of carbohydrates and 8 units of protein. The price of food A is ₹ 4.5 per unit and that of food B is ₹ 3.5 per unit. Form the LPP, so that the sick person’s diet meets the requirements at a minimum cost.


Select the appropriate alternatives for each of the following question:

The value of objective function is maximum under linear constraints


Which of the following is correct?


The maximum value of z = 10x + 6y subject to the constraints 3x + y ≤ 12, 2x + 5y ≤ 34, x, ≥ 0, y ≥ 0 is ______.


The point of which the maximum value of x + y subject to the constraints x + 2y ≤  70, 2x + y ≤ 95, x, ≥ 0, y ≥ 0 is is obtained at ______.


The corner points of the feasible solution given by the inequation x + y ≤ 4, 2x + y ≤ 7, x ≥ 0, y ≥ 0 are ______.


Solve each of the following inequations graphically using XY-plane:

4x - 18 ≥ 0


Solve the following LPP:

Maximize z = 4x1 + 3x2 subject to
3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0. 


Solve the following LPP:

Maximize z =60x + 50y  subject to

x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0.


A chemical company produces a chemical containing three basic elements A, B, C, so that it has at least 16 litres of A, 24 litres of B and 18 litres of C. This chemical is made by mixing two compounds I and II. Each unit of compound I has 4 litres of A, 12 litres of B and 2 litres of C. Each unit of compound II has 2 litres of A, 2 litres of B and 6 litres of C. The cost per unit of compound I is ₹ 800 and that of compound II is ₹ 640. Formulate the problems as LPP and solve it to minimize the cost.


A manufacturer produces bulbs and tubes. Each of these must be processed through two machines M1 and M2. A package of bulbs requires 1 hour of work on Machine M1 and 3 hours of work on M2. A package of tubes requires 2 hours on Machine M1 and 4 hours on Machine M2. He earns a profit of ₹ 13.5 per package of bulbs and ₹ 55 per package of tubes. If maximum availability of Machine M1 is 10 hours and that of Machine M2 is 12 hours, then formulate the L.P.P. to maximize the profit.


Choose the correct alternative :

Of all the points of the feasible region the optimal value of z is obtained at a point


Choose the correct alternative :

The corner points of the feasible region are (0, 0), (2, 0), `(12/7, 3/7)` and (0,1) then the point of maximum z = 7x + y


Fill in the blank :

The optimal value of the objective function is attained at the _______ points of feasible region.


Which value of x is in the solution set of inequality − 2X + Y ≥ 17


Minimize z = 6x + 21y subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0 show that the minimum value of z occurs at more than two points


x − y ≤ 1, x − y ≥ 0, x ≥ 0, y ≥ 0 are the constant for the objective function z = x + y. It is solvable for finding optimum value of z? Justify?


State whether the following statement is True or False:

Objective function of LPP is a relation between the decision variables


Constraints are always in the form of ______ or ______.


Solve the following linear programming problems by graphical method.

Maximize Z = 22x1 + 18x2 subject to constraints 960x1 + 640x2 ≤ 15360; x1 + x2 ≤ 20 and x1, x2 ≥ 0.


A solution which maximizes or minimizes the given LPP is called


A firm manufactures pills in two sizes A and B. Size A contains 2 mgs of aspirin, 5 mgs of bicarbonate and 1 mg of codeine. Size B contains 1 mg. of aspirin, 8 mgs. of bicarbonate and 6 mgs. of codeine. It is found by users that it requires at least 12 mgs. of aspirin, 74 mgs. of bicarbonate and 24 mgs. of codeine for providing immediate relief. It is required to determine the least number of pills a patient should take to get immediate relief. Formulate the problem as a standard LLP.


Solve the following linear programming problem graphically.

Maximize Z = 60x1 + 15x2 subject to the constraints: x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1, x2 ≥ 0.


The LPP to maximize Z = x + y, subject to x + y ≤ 1, 2x + 2y ≥ 6, x ≥ 0, y ≥ 0 has ________.


Which of the following can be considered as the objective function of a linear programming problem?


The minimum value of z = 5x + 13y subject to constraints 2x + 3y ≤ 18, x + y ≥ 10, x ≥ 0, y ≥ 2 is ______ 


The point which provides the solution of the linear programming problem, Max.(45x + 55y) subject to constraints x, y ≥ 0, 6x + 4y ≤ 120, 3x + 10y ≤ 180, is ______ 


The optimal value of the objective function is attained at the ______ of feasible region.


For the following shaded region, the linear constraint are:


Solve the following LPP:

Maximize z = 7x + 11y, subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


Food F1 contains 2, 6, 1 units and food F2 contains 1, 1, 3 units of proteins, carbohydrates, fats respectively per kg. 8, 12 and 9 units of proteins, carbohydrates and fats is the weekly minimum requirement for a person. The cost of food F1 is Rs. 85 and food F2 is Rs. 40 per kg. Formulate the L.P.P. to minimize the cost.


Sketch the graph of the following inequation in XOY co-ordinate system.

2y - 5x ≥ 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×