मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

A random variable X has the following probability mass function. x 1 2 3 4 5 F(x) k2 2k2 3k2 2k 3k Find P(X > 3) - Mathematics

Advertisements
Advertisements

प्रश्न

A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(X > 3)

बेरीज

उत्तर

P(X > 3) = P(X = 4) + P(X = 5)

= `2/6 + 3/6`

= `5/6`

shaalaa.com
Types of Random Variables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Probability Distributions - Exercise 11.2 [पृष्ठ १९४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 11 Probability Distributions
Exercise 11.2 | Q 6. (iii) | पृष्ठ १९४

संबंधित प्रश्‍न

The p.m.f. of a r.v. X is given by P (X = x) =`("" ^5 C_x ) /2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise.

Then show that P (X ≤ 2) = P (X ≥ 3).


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find P(0 < X ≤ 1).


F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______


c.d.f. of a discrete random variable X is


A coin is tossed 10 times. The probability of getting exactly six heads is ______.


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the cumulative distribution function


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find P(4 ≤ X < 10)


Find the probability mass function and cumulative distribution function of a number of girl children in families with 4 children, assuming equal probabilities for boys and girls


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find P(X ≥ 1)


If Xis a.r.v. with c.d.f F (x) and its probability distribution is given by

X = x - 1.5 -0.5 0.5 1.5 2.5
P(X = x) 0.05 0.2 0.15 0.25 0.35

then, F(1.5) - F(- 0.5) = ?


Choose the correct alternative:

The probability mass function of a random variable is defined as:

x – 2 – 1 0 1 2
f(x) k 2k 3k 4k 5k

Then E(X ) is equal to:


If A = {x ∈ R : x2 - 5 |x| + 6 = 0}, then n(A) = _____.


A random variable X has the following probability distribution:

X 1 2 3 4
P(X) `1/3` `2/9` `1/3` `1/9`

1hen, the mean of this distribution is ______ 


The probability distribution of a random variable X is given below. If its mean is 4.2, then the values of a and bar respectively 

X = x 1 2 3 4 5 6
P(X = x) a a a b b 0.3

The probability distribution of a random variable X is given below.

X = k 0 1 2 3 4
P(X = k) 0.1 0.4 0.3 0.2 0

The variance of X is ______


Two coins are tossed. Then the probability distribution of number of tails is.


The c.d.f. of a discrete r.v. X is

X = x -4 -2 -1 0 2 4 6 8
F(x) 0.2 0.4 0.55 0.6 0.75 0.80 0.95 1

Then P(X ≤ 4|X > -1) = ?


Two cards are randomly drawn, with replacement. from a well shuffled deck of 52 playing cards. Find the probability distribution of the number of aces drawn.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×