Advertisements
Advertisements
प्रश्न
आकृति में दर्शाये गये छायांकित खेत का क्षेत्रफल ज्ञात कीजिए।
उत्तर
आकृति में, ED को मिलाइए।
आकृति से, अर्ध-वृत्त DEF की त्रिज्या, r = 6 – 4 = 2 m
अब, आयत ABCD का क्षेत्रफल = BC × AB = 8 × 4 = 32 cm2
और अर्ध-वृत्त DFE का क्षेत्रफल = `(π"r"^2)/2 = π/2(2)^2` = 2π m2
∴ छायांकित क्षेत्र का क्षेत्रफल = आयत ABCD का क्षेत्रफल + अर्ध-वृत्त DFE का क्षेत्रफल
= (32 + 2π) m2
APPEARS IN
संबंधित प्रश्न
दी गई आकृति में, छायांकित भाग का क्षेत्रफल ज्ञात कीजिए, जहाँ भुजा 12 सेमी वाले एक समबाहु त्रिभुज OAB के शीर्ष O को केंद्र मान कर 6 सेमी त्रिज्या वाला एक वृत्तीय चाप खींचा गया है। [उपयोग Π = `22/7`]
भुजा 4 सेमी वाले एक वर्ग के प्रत्येक कोने से 1 सेमी त्रिज्या वाले वृत्त का एक चतुर्थांश काटा गया है तथा बीच में 2 सेमी व्यास का एक वृत भी काटा गया है, जैसा कि आकृति में दर्शाया गया है। वर्ग के शेष भाग का क्षेत्रफल ज्ञात कीजिए। [उपयोग Π = `22/7`]
दी गई आकृति में AB और CD केंद्र O वाले एक वृत्त के दो परस्पर लंब व्यास हैं तथा OD छोटे वृत्त का व्यास है। यदि OA = 7 सेमी है, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। [उपयोग Π = `22/7`]
एक वर्गाकार रूमाल पर, नौ वृत्ताकार डिजाइन बने हैं, जिनमें से प्रत्येक की त्रिज्या 7 सेमी है। रूमाल के शेष भाग का क्षेत्रफल ज्ञात कीजिए।
दी गई आकृति में OACB केंद्र O और त्रिज्या 3.5 सेमी वाले एक वृत्त का चतुर्थांस है। यदि OD = 2 सेमी है, तो निम्नलिखित के क्षेत्रफल ज्ञात कीजिए:
- चतुर्थांस OACB
- छायांकित भाग
[उपयोग Π = `22/7`]
AB और CD केंद्र O तथा त्रिज्याओं 21 सेमी और 7 सेमी वाले दो सकेंद्रीय वृत्तों के क्रमश: दो चाप हैं। यदि ∠AOB = 30° तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
[उपयोग Π = `22/7`]
दी गई आकृति में, ABC त्रिज्या 12 सेमी वाले एक वृत का चतुर्थांश है तथा BC को व्यास मानकर एक अर्धवृत्त्त खींचा गया है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। [उपयोग Π = 22/7]
त्रिज्या 8 cm वाले एक वृत्त के अंतर्गत खींचे जा सकने वाले वर्ग का क्षेत्रफल ______ है।
आकृति में दर्शायी गयी फूलों की क्यारी (अर्धवृत्ताकार सिरों वाली) का क्षेत्रफल ज्ञात कीजिए।
आकुति में, छायांकित क्षेत्र का क्षेत्रफल ज्ञात कीजिए।