Advertisements
Advertisements
प्रश्न
आकृति में यदि LM || CB और LN || CD हो तो सिद्ध कीजिए कि `"AM"/"AB" = "AN"/"AD"` है।
उत्तर
ΔABC में,
ML || BC दिया है।
अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से
`("AM")/("MB") = ("AL")/("LC")`
⇒ `("MB")/("AM") = ("LC")/("AL")`
⇒ `("MB")/("AM") + 1("LC")/("AL") + 1` ...[दोनों तरफ 1 जोड़ने पर]
⇒ `("MB" + "AM")/("AM") = ("LC" + "AL")/("AL")`
⇒ `("AB")/("AM") = ("AC")/("AL")`
⇒ `("AM")/("AB") = ("AL")/("AC")` ...(1)
इसी प्रकार ΔACD, LN || में CD, हमारे पास है
`("AL")/("AC") = ("AN")/("AD")` ...(2)
(1) और (2) से
`("AM")/("AB") = ("AL")/("AC") = ("AN")/("AD")`
⇒ `("AM")/("AB") = ("AN")/("AD")` ...(सिद्ध)
APPEARS IN
संबंधित प्रश्न
आकृति में, DE || BC है। EC ज्ञात कीजिए:
आकृति में, DE || BC है। AD ज्ञात कीजिए:
किसी ∆PQR की भुजाओं PQ और PR पर क्रमशः बिंदु E और F स्थित हैं। निम्नलिखित स्थिति के लिए, बताइए कि क्या EF || QR है:
PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm और FR = 2.4 cm
आकृति में DE || OQ और DF || OR है। दर्शाइए कि EF || QR है।
आधारभूत समानुपातिकता प्रमेय का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं के मध्य-बिंदुओं को मिलाने वाली रेखा तीसरी भुजा के समांतर होती है। (याद कीजिए कि आप कक्षा IX में ऐसा कर चुके हैं)।
आकृति में क्रमशः OP, OQ और OR पर स्थित बिंदु A, B और C इस प्रकार हैं कि AB || PQ और AC || PR है। दर्शाइए कि BC || QR है।
एक चतुर्भुज ABCD के विकर्ण परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं कि `("AO")/("BO") = ("CO")/("DO")` है। दर्शाइए कि ABCD एक समलंब है।
आकृति में PS कोण QPR का समद्विभाजक है। सिद्ध कीजिए कि `"QS"/"SR" = "PQ"/"PR"` है।
दो समरूप त्रिभुजों के संगत शीर्षलंबों का अनुपात `3/5` है। क्या यह कहना सही है कि इन त्रिभुजों के क्षेत्रफलों का अनपात `6/5` है? क्यों?
आकृति में, यदि PQRS एक समांतर चतुर्भुज है तथा AB || PS है, तो सिद्ध कीजिए कि OC || SR है।