मराठी

AB and AC are two chords of a circle of radius r such that AB = 2AC. If p and q are the distances of AB and AC from the centre, prove that 4q2 = p2 + 3r2. - Mathematics

Advertisements
Advertisements

प्रश्न

AB and AC are two chords of a circle of radius r such that AB = 2AC. If p and q are the distances of AB and AC from the centre, prove that 4q2 = p2 + 3r2.

आकृती
बेरीज

उत्तर

Given: In a circle of radius r, there are two chords AB and AC such that AB = 2AC. Also, the distance of AB and AC from the centre are p and q, respectively.

To prove: 4q2 = p2 + 3r2

Proof: Let AC = a, then AB = 2a


From centre O, perpendicular is drawn to the chords AC and AB at M and N, respectively.

∴ `AM = MC = a/2`

AN = NB = a

In ΔOAM, AO2 = AM2 + MO2   ...[By Pythagoras theorem]

⇒ `AO^2 = (a/2)^2 + q^2`  ...(i)

In ΔOAN, use Pythagoras theorem,

AO2 = (AN)2 + (NO)2

⇒ AO2 = (a)2 + p2  ...(ii)

From equations (i) and (ii),

`(a/2)^2 + q^2 = a^2 + p^2`

⇒ `a^2/4 + q^2 = a^2 + p^2`

⇒ a2 + 4q2 = 4a2 + 4p2   ...[Multiplying both sides by 4]

⇒ 4q2 = 3a2 + 4p2

⇒ 4q2 = p2 + 3(a2 + p2)

⇒ 4q2 = p2 + 3r2   ...[In right angled ΔOAN, r2 = a2 + p2]

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Circles - Exercise 10.4 [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 10 Circles
Exercise 10.4 | Q 12. | पृष्ठ १०७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×